For three decades airborne laser-induced fluorescence has demonstrated value for chlorophyll biomass retrieval in wide-area oceanic field experiments, satellite validation, and algorithm development. A new chlorophyll biomass retrieval theory is developed using laser-induced and water Raman normalized fluorescence of both (a) chlorophyll and (b) chromophoric dissolved organic matter (CDOM). This airborne lidar retrieval theory is then independently confirmed by chlorophyll biomass obtained from concurrent (1) ship-cruise retrievals, (2) satellite inherent optical property (IOP) biomass retrievals, and (3) satellite standard band-ratio chlorophyll biomass retrievals. The new airborne lidar chlorophyll and CDOM fluorescence-based chlorophyll biomass retrieval is found to be more robust than prior lidar methods that used chlorophyll fluorescence only. Future research is recommended to further explain the underlying influence of CDOM on chlorophyll production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.44.002857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!