Leakage of the fundamental mode in photonic crystal fiber tapers.

Opt Lett

Centre for Ultrahigh-Bandwidth Devices for Optical Systems and School of Physics, University of Sydney, Sydney, NSW 2006, Australia.

Published: May 2005

We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002)], which apply to PCFs with a finite microstructure.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.30.001123DOI Listing

Publication Analysis

Top Keywords

fundamental mode
8
photonic crystal
8
core mode
8
mode
5
leakage fundamental
4
mode photonic
4
fiber
4
crystal fiber
4
fiber tapers
4
tapers report
4

Similar Publications

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells.

Microbiol Res

December 2024

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India. Electronic address:

Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations.

View Article and Find Full Text PDF

A novel hybrid model for air quality prediction via dimension reduction and error correction techniques.

Environ Monit Assess

December 2024

School of Big Data and Statistics, Anhui University, Hefei, 230601, Anhui, China.

The monitoring of air pollution through the air quality index (AQI) is a fundamental tool in ensuring public health protection. Accurate prediction of air quality is necessary for the timely implementation of measures to control and manage air pollution, thereby mitigating its detrimental impact on human health. A novel hybrid prediction model is proposed, which is EMD-KMC-EC-SSA-VMD-LSTM.

View Article and Find Full Text PDF

Coupling the thermal acoustic modes of a bubble to an optomechanical sensor.

Microsyst Nanoeng

December 2024

ECE Department, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9, AB, Canada.

Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range.

View Article and Find Full Text PDF

We treat edge-mode resonance that may exist at boundaries of transversely finite beams illuminating a photonic lattice. The lattice is in the dark state signifying a perfect bound state in the continuum (BIC). The dark state is non-radiative in symmetric systems because lateral waves cannot couple to the lattice due to destructive interference between counter-propagating waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!