A schematic representation of optical feedback between two resonator mirrors undergoing a phase shift each round trip as a function of the separation of the mirrors is studied. A transfer function modeling of the extrinsic Fabry-Perot interferometer (EFPI) is presented. Nyquist analysis has been used to forecast the operational stability and possibility of interference in an EFPI. The analysis with two perfectly parallel surfaces of the cavity shows efficient interference. The performance when there is some tilt between the two mirrors in the cavity is also studied and is presented. In this case some restricted interference is found.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.003192DOI Listing

Publication Analysis

Top Keywords

extrinsic fabry-perot
8
fabry-perot interferometer
8
modeling analysis
4
analysis extrinsic
4
interferometer cavity
4
cavity schematic
4
schematic representation
4
representation optical
4
optical feedback
4
feedback resonator
4

Similar Publications

In this paper, we proposed an in-fiber Fabry-Perot temperature sensor which filled with Indium gallium stannum (InGaSn) alloy. By splicing a single-mode fiber axially with hollow-core fibers (HCFs) of varying inner diameters, a cavity of the Fabry-Perot interferometer (FPI) structure is formed. Assisted by liquid metal with fluidity and high thermal expansivity, subtle temperature fluctuations are converted into variations in the interferometric cavity length which leads to a significant spectral drift.

View Article and Find Full Text PDF

In the design of an extrinsic Fabry-Perot interferometer (EFPI) acoustic sensor, broadband response and high-sensitivity sensing are usually conflicting and need to be carefully balanced. Here, we present a novel, to the best of our knowledge, optical fiber acoustic sensor based on an ultra-thin diamond-like carbon (DLC) film, fabricated using the plasma-enhanced chemical vapor deposition method, and transferred by a surface-energy-assisted method. The sensor exhibits a broadband response ranging from 200 Hz to 100 kHz, maintains an average sensitivity of 457.

View Article and Find Full Text PDF

An all-sapphire fiber-optic extrinsic Fabry-Perot interferometric (EFPI) sensor for the simultaneous measurement of ultra-high temperature and high pressure is proposed and experimentally demonstrated. The sensor is fabricated based on all-sapphire, including a sapphire fiber, a sapphire capillary and a sapphire wafer. A femtosecond (fs) laser is employed to drill a through hole at the side wall of the sapphire capillary to allow gas flow.

View Article and Find Full Text PDF

Miniature acoustic sensors with high sensitivity are highly desired for applications in medical photoacoustic imaging, acoustic communications and industrial nondestructive testing. However, conventional acoustic sensors based on piezoelectric, piezoresistive and capacitive detectors usually require a large element size on a millimeter to centimeter scale to achieve a high sensitivity, greatly limiting their spatial resolution and the application in space-confined sensing scenarios. Herein, by using single-crystal two-dimensional gold flakes (2DGFs) as the sensing diaphragm of an extrinsic Fabry-Perot interferometer on a fiber tip, we demonstrate a miniature optical acoustic sensor with high sensitivity.

View Article and Find Full Text PDF

A four-wavelength passive demodulation algorithm is proposed and experimentally demonstrated for the interrogation of the one cavity in a dual-cavity extrinsic Fabry-Perot interferometric (EFPI) sensor. The lengths of two cavities are adjusted to generate four quadrature signals for each individual cavity. Both simulation and experimental results are presented to validate the performance of this technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!