Overexpression of the rntA cDNA encoding RNase T1 derived from A. oryzae causes severe growth inhibition in S. cerevisiae. We previously reported that most S. cerevisiae mutant strains defective in translocation into the ER, ER-Golgi transport and vacuole formation exhibited hypersensitivity to expression of RNase T1. Screening for S. cerevisiae mutants that showed RNase T1 hypersensitivity resulted in the isolation of 38 (rns) mutant strains. Some of these mutants showed a variety of phenotypes including temperature-sensitive growth, hypersensitivity to G418, defect in invertase glycosylation and fragmented vacuoles. We identified the genes mutated in three of the rns mutants, rns1, rns2, and rns3, as DSL1, UMP1, and SEC17, respectively. Fluorescence microscopic observation showed that GFP or myc-tagged Rns1p was localized at the nuclear region in the cell. Two-hybrid screening revealed the interaction of Rns1p with a transcription factor Cin5p and a functionally unknown Ylr440cp. It was observed that HA-tagged Ylr440cp was localized to the ER and nuclear envelope.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.51.73DOI Listing

Publication Analysis

Top Keywords

rns mutants
8
mutant strains
8
localized nuclear
8
isolation saccharomyces
4
cerevisiae
4
saccharomyces cerevisiae
4
rnase
4
cerevisiae rnase
4
rnase hypersensitive
4
hypersensitive rns
4

Similar Publications

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

As nitrite, sulfite has been used in food preservation for centuries but how it inhibits bacterial growth remains underexplored. To address this issue, in this study, we set out to test if cytochrome (cyt) c proteins protect bacteria from the damage of certain reactive sulfur species (RSS) because they do so in the case of reactive nitrogen species (RNS). We show that some reactive sulfur species, such as sulfite and peroxymonosulfate (PMS), inhibit growth of bacterial strains devoid of cytochrome (cyt) c proteins.

View Article and Find Full Text PDF

Seed germination and dormancy represent critical phases in the life cycle of plants, tightly regulated by endogenous phytochrome levels and environment signals. High temperatures (HT) induce the overaccumulation of reactive oxygen species (ROS) and increase abscisic acid (ABA), thereby inhibiting seed germination. Our previous findings showed that HT induced the burst of reactive nitrogen species (RNS), increasing the S-nitrosylation modification of HFR1, which effectively blocks seed germination.

View Article and Find Full Text PDF

We used a replicative lifespan (RLS) experiment of K6001 yeast to screen for anti-aging compounds within lavender extract ( Mill.), leading to the discovery of -cyclocitral (CYC) as a potential anti-aging compound. Concurrently, the chronological lifespan (CLS) of YOM36 yeast and mammalian cells confirmed the anti-aging effect of CYC.

View Article and Find Full Text PDF
Article Synopsis
  • Root nodule symbiosis (RNS) between legumes and rhizobia is crucial for nitrogen in agriculture and depends on plant defense regulation.
  • The defense hormone jasmonic acid (JA) plays a dual role in RNS based on its concentration, and the study highlights its impact on rhizobia infections in Medicago truncatula.
  • Key findings include that the MtMYC2 gene is vital for regulating specific genes linked to symbiosis and that mutations in MtMYC2 hinder rhizobia infection while increasing susceptibility to pathogens, thus revealing the complex role of JA in plant-microbe interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!