Constitutive activation of phosphatidylinositol 3-kinase (PI3K) confers resistance to apoptotic stimuli induced by chemotherapeutic agents in a variety of cancer cells. Therefore, the comprehension of mechanisms whereby PI3K downregulation interferes with chemotherapy is of major clinical interest for the elaboration of combined anticancer treatment modalities. Here, we examined the molecular mechanisms whereby the PI3K inhibitor LY294002 sensitized p53- and Fas-deficient hepatoma cells to etoposide and camptothecin. LY294002 increased Hep3B cell susceptibility to chemotherapy-induced apoptosis by enhancing the expression of DR4 and DR5 and the activation of caspase-8 and -3. Moreover, LY294002-mediated sensitization to chemotherapy involved mitochondrial Bax translocation and cytosolic cytochrome c accumulation. In Hep3B cells, LY294002 led to the reactivation of glycogen synthase kinase-3beta (GSK-3beta) by promoting its dephosphorylation on the serine 9 residue independently from Akt inhibition. The transient transfection of a constitutively active and non-phosphorylable S9AGSK-3beta mutant sensitized cells to etoposide cytotoxic effects while cell treatment with the small GSK-3beta inhibitor SB-415286 repressed the sensitizing effect of LY294002 on chemotherapy-induced apoptosis and caspase-8 activation. Altogether, our results show that LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis via death receptor and mitochondria signalling pathways and that GSK-3beta reactivation is involved in this process. Therefore, PI3K-mediated GSK-3beta inhibition could be a mechanism by which cancer cells escape from chemotherapy-induced apoptosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemotherapy-induced apoptosis
20
hepatoma cells
12
gsk-3beta reactivation
8
ly294002 sensitizes
8
sensitizes hepatoma
8
cells chemotherapy-induced
8
cancer cells
8
mechanisms pi3k
8
cells etoposide
8
cells
7

Similar Publications

With the widespread use of lidocaine for pain control in cancer therapy, its antitumor activity has attracted considerable attention in recent years. This paper provides a simple strategy of combining lidocaine with chemotherapy drugs for cancer therapy, aiming to relieve chemotherapy-induced pain and achieve stronger antitumor efficacy. However, there is still a lack of substantial pre-clinical evidence for the efficacy and related mechanisms of such combinations, obstructing their potential clinical application.

View Article and Find Full Text PDF

Lycopene mitigates paclitaxel-induced cognitive impairment in mice; Insights into Nrf2/HO-1, NF-κB/NLRP3, and GRP-78/ATF-6 axes.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt. Electronic address:

Chemotherapy-induced cognitive impairment, referred to as "chemobrain", is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood.

View Article and Find Full Text PDF

Objective: This study aims to investigate the effect of Gallic Acid (GA) on the alleviation of chemotherapy-induced bone marrow suppression, with a comparison to Diyu sheng bai tablets (DYSB) and RhG-CSF.

Methods: A mouse model of bone marrow suppression was established in BALB/c mice using intraperitoneal injections of cyclophosphamide (CTX). All procedures were performed after obtaining ethical clearance from the institutional animal ethics committee.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Chemotherapy-induced diminished murine ovarian reserve model and impact of low-dose chemotherapy on fertility.

F S Sci

January 2025

Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium. Electronic address:

Objective: To establish a murine model of chemotherapy-induced diminished ovarian reserve (DOR) and investigate residual fertility after chemotherapy exposure.

Design: Two different chemotherapy protocols were tested to establish a valid DOR model by comparing follicle densities in mice given either protocol versus physiological solution. An ovarian stimulation protocol was then selected from among different gonadotropins by counting the number of day-2 embryos obtained from normal mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!