An important step in understanding the regulation of a prokaryotic genome is the generation of its transcription unit map. The current strongest operon predictor depends on the distributions of intergenic distances (IGD) separating adjacent genes within and between operons. Unfortunately, experimental data on these distance distributions are limited to Escherichia coli and Bacillus subtilis. We suggest a new graph algorithmic approach based on comparative genomics to identify clusters of conserved genes independent of IGD and conservation of gene order. As a consequence, distance distributions of operon pairs for any arbitrary prokaryotic genome can be inferred. For E.coli, the algorithm predicts 854 conserved adjacent pairs with a precision of 85%. The IGD distribution for these pairs is virtually identical to the E.coli operon pair distribution. Statistical analysis of the predicted pair IGD distribution allows estimation of a genome-specific operon IGD cut-off, obviating the requirement for a training set in IGD-based operon prediction. We apply the method to a representative set of eight genomes, and show that these genome-specific IGD distributions differ considerably from each other and from the distribution in E.coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1143694PMC
http://dx.doi.org/10.1093/nar/gki634DOI Listing

Publication Analysis

Top Keywords

prokaryotic genome
8
distance distributions
8
igd distribution
8
operon
6
igd
6
universally applicable
4
applicable method
4
method operon
4
operon map
4
map prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!