Molecular cloning and protein expression of Duchenne muscular dystrophy gene products in porcine retina.

Neuromuscul Disord

Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592, Hôpital Saint-Antoine, Bâtiment Kourilsky, 184 rue du Faubourg Saint-Antoine, 75571 Paris, France.

Published: July 2005

Due to the difference between rodent and human retinal circuitry, we characterize a new animal model of retinal perturbation in neurotransmission in Duchenne Muscular Dystrophy (DMD) patients. We investigated the expression and localization of dystrophin proteins and dystrophin associated proteins in porcine retina by reverse transcription polymerase chain reaction, Western blot analysis and immunohistochemistry. Homologues of human DMD gene products and alternative spliced isoforms of Dp71 were identified. We observed that dystrophins were expressed in the outer plexiform layer, around blood vessels and at the inner limiting membrane as previously described in human and mouse retinae. Moreover, by double immunostaining we showed that beta-dystroglycan co-localizes with dystrophin in the outer plexiform layer whereas alpha1-syntrophin labeling differs from that for dystrophins. Using confocal laser microscopy we observed that dystrophins labeling co-localizes with pre- and post-synaptic cell markers in the outer plexiform layer. We suggest that porcine retina constitutes a good model to study the role of dystrophins in retinal neurotransmission and should be used to investigate the physiological roles of dystrophins in signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2005.03.011DOI Listing

Publication Analysis

Top Keywords

porcine retina
12
outer plexiform
12
plexiform layer
12
duchenne muscular
8
muscular dystrophy
8
gene products
8
observed dystrophins
8
dystrophins
5
molecular cloning
4
cloning protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!