The genetic system on Trypanosoma brucei has been analysed by generating large numbers of independent progeny clones from two crosses, one between two cloned isolates of Trypanosoma brucei brucei and one between cloned isolates of T. b. brucei and Trypanosoma brucei gambiense, Type 2. Micro and minisatellite markers (located on each of the 11 megabase housekeeping chromosomes) were identified, that are heterozygous in one or more of the parental strains and the segregation of alleles at each locus was then determined in each of the progeny clones. The results unequivocally show that alleles segregate in the predicted ratios and that alleles at loci on different chromosomes segregate independently. These data provide statistically robust proof that the genetic system is Mendelian and that meiosis occurs. Segregation distortion is observed with the minisatellite locus located on chromosome I of T. b. gambiense Type 2 and neighboring markers, but analysis of markers further along this chromosome did not show distortion leading to the conclusion that this is due to selection acting on one part of this chromosome. The results obtained are discussed in relation to previously proposed models of mating and support the occurrence of meiosis to form haploid gametes that then fuse to form the diploid progeny in a single round of mating.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2005.04.009DOI Listing

Publication Analysis

Top Keywords

genetic system
12
trypanosoma brucei
12
proof genetic
8
system mendelian
8
progeny clones
8
cloned isolates
8
gambiense type
8
brucei
6
allelic segregation
4
segregation independent
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!