Low-pH whey protein gels are formulated using a sequential protocol of heat treatment, enzyme incubation, and cold-set acidification. The heat-induced disulfide and enzyme-catalyzed epsilon-(gamma-glutamyl)lysine linkages, both at neutral pH, produce a polymerized protein solution. The molecular weights of these samples show an exponential increase with protein concentration. The additional enzyme-catalyzed cross-links cause little change in molecular weight from that of heat-treated samples at low protein concentrations, indicating predominant intramolecular cross-linking. Enzyme treatment at higher protein concentration however causes increase in molecular weight, possibly due to formation of intermolecular cross-links. Acidification of the polymerized protein solutions through glucono-delta-lactone acid leads to gel formation at pH 4. The elastic (G') and viscous (G' ') moduli of gels with and without enzyme treatment show similar frequency dependence, indicating comparable microstructures, consistent with all samples exhibiting similar fractal dimensions of approximately 2 obtained independently using rheology and confocal microscopy. A substantial increase in fracture strain and stress of the gel is achieved by enzyme treatment. However, the elastic modulus (G') is only slightly larger after enzyme treatment compared with heat-treated samples. These results indicate that factors responsible for fracture properties may not be apparent in the gel microstructure and linear viscoelastic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf047957w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!