Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO(2))(1)(-)(x)()(LSiO(1.5))(x)(), where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S < or = 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu(t))(2). At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0506859 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
A monocationic dicopper(I,I) nitrite complex [Cu(μ-κ:κ-ON)DPFN][NTf] () (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf = N(SOCF)), was synthesized by treatment of a dicopper acetonitrile complex, [Cu(μ-MeCN)DPFN][NTf] (), with tetrabutylammonium nitrite ([BuN][NO]). DFT calculations indicate that is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ:κ-ON complex with -TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany. Electronic address:
Understanding processes regulating thioarsenate (HAsSO; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
Dalton Trans
November 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!