Most of the mobile phones in Turkey emit 900 MHz radiation which is mainly absorbed by the skin and, to a lesser extent, muscle. The aim of this study was to investigate the effects the 900 MHz electromagnetic irradiation emitted by these devices on the induction of histopathologic changes in skin and the effect of melatonin (Mel) on any of these changes. Thirty male Wistar-Albino rats were used in the study. The experimental groups were composed of: a nontreated control group, an irradiated group (IR) without Mel and an irradiated with Mel treatment group (IR + Mel). 900 MHz radiation was applied to IR group for 10 days (30 min/day). The IR + Mel group received 10 mg/kg per day melatonin in tap water for 10 days before irradiation. At the end of the tenth day, the skin graft was excized from the thoraco-abdominal area. Histopathologic changes in skin were analyzed. In the IR group, increased thickness of stratum corneum, atrophy of epidermis, papillamatosis, basal cell proliferation, increased granular cell layer (hypergranulosis) in epidermis and capillary proliferation, impairment in collagen tissue distribution and separation of collagen bundles in dermis were all observed compared to the control group. Most of these changes, except hypergranulosis, were prevented with melatonin treatment. In conclusion, exposure to 900 MHz radiation emitted by mobile phones caused mild skin changes. Furthermore, melatonin treatment can reduce these changes and may have a beneficial effect to prevent 900 MHz mobile phone-induced rat skin changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1191/0748233704th207oa | DOI Listing |
Behav Brain Res
January 2025
Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
Whilst the world sees the tremendous growth of mobile phone technology, radiofrequency electromagnetic radiation (RF-EMR) induced possible health effects have emerged as a topic of recent day debate. The current study is designed to test the hypothesis that chronic 900 MHz radiation exposure would potentially dysregulate the stress response system (HPA axis) in vivo, via, its non-thermal mechanisms, leading to alterations in the microarchitecture of the adrenal gland, vulnerable brain regions such as the hippocampus which may results in altered behaviours in rats. Male albino Wistar rats aged four weeks, weighing 50-60 g were subjected to 900 MHz radiation from a mobile phone for four weeks at a rate of one hour per day.
View Article and Find Full Text PDFReprod Toxicol
December 2024
School of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkiye; Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania. Electronic address:
The use of technologies that produce and emit electromagnetic fields (EMF) is growing exponentially worldwide. The biological effects of EMF-emitting equipment, such as mobile phones and other wireless devices, have been studied in the last decade using in vitro and in vivo methods. Infertility is a growing health problem, and nearly half of cases are because of male-factor.
View Article and Find Full Text PDFBiomedicines
August 2024
Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France.
Sci Total Environ
December 2024
Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey. Electronic address:
In recent years, obesity has become a global problem in children and adolescents, in parallel with the rapid increase in the use of information and communication technology. Recognizing the embryonic causes of obesity may help prevent adverse adult health outcomes. In our study, we hypothesized that radiofrequency-electromagnetic field (RF-EMF) exposure during embryogenesis would affect the molecular mechanisms related to adipogenesis and insulin resistance in zebrafish.
View Article and Find Full Text PDFParasitol Res
August 2024
Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!