An analysis of neural models for walking control.

IEEE Trans Neural Netw

Institute for Perception, Action, and Behavior, School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, U.K.

Published: May 2005

A large space of different neural models exists from simple mathematical abstractions to detailed biophysical representations with strongly differing levels of complexity and biological relevance. Previous comparisons between models have looked at biological realism or mathematical tractability rather than expressive power. This paper, however, investigates whether more sophisticated models are better suited to a complex sensorimotor control task than simpler ones, or whether the more general nature of groups of the simpler neurons allows them to collectively solve complex tasks better despite their individual simplicity. Many models have been proposed or used for sensorimotor control tasks such as the control of locomotion. Four such neural models with varying levels of complexity were chosen. Controllers made of networks of each neural type were evolved to generate locomotion in a simulated dynamically stable four-legged robot using a genetic algorithm. The problem domain was chosen as one for which no simple solution could be hand crafted and which, with its tight sensorimotor coupling, had strongly time-dependent properties as is common in many biological control tasks. Analysis of the results shows that the most complex and biologically based model is significantly better at walking control, even producing recognizable gaits.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2005.844901DOI Listing

Publication Analysis

Top Keywords

neural models
12
walking control
8
levels complexity
8
sensorimotor control
8
control tasks
8
models
6
control
6
analysis neural
4
models walking
4
control large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!