Functional neuroimaging in motor recovery after stroke.

Top Stroke Rehabil

Department of Neurology, Georgetown University Hospital, Washington, DC, USA.

Published: September 2005

Neuroimaging techniques provide information on the neural substrates underlying functional recovery after stroke, the number one cause of long-term disability. Despite the methodological difficulties, they promise to offer insight into the mechanisms by which therapeutic interventions can modulate human cortical plasticity. This information should lead to the development of new, targeted interventions to maximize recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1310/RXBN-FTCM-CTV7-F42LDOI Listing

Publication Analysis

Top Keywords

recovery stroke
8
functional neuroimaging
4
neuroimaging motor
4
motor recovery
4
stroke neuroimaging
4
neuroimaging techniques
4
techniques provide
4
provide neural
4
neural substrates
4
substrates underlying
4

Similar Publications

Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery.

View Article and Find Full Text PDF

Introduction: Prompt treatment with IV thrombolytics (IVT) in acute ischemic stroke (AIS) patients is critical for improved recovery and survival. Recently, hospital systems have switched to the IVT tenecteplase (TNK) instead of the FDA-approved alteplase (tPA) for treatment. Multiple studies and meta-analyses evaluating the efficacy and safety of TNK demonstrate similar or superior outcomes when compared to tPA.

View Article and Find Full Text PDF

The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

LM22A-4-loaded smart mesoporous balls enhance neuroprotection and functional recovery after ischemic stroke.

Biomed Pharmacother

January 2025

Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea. Electronic address:

Stroke is globally recognized as the second leading cause of death, significantly impairing both motor and cognitive functions. Enhancing regeneration after stroke is crucial for restoring these functions and necessitates strategies to promote neuroregeneration to achieve better post-stroke outcomes. Brain-derived neurotrophic factor (BDNF) plays a key role in neuroregeneration by influencing motor ability, learning, memory, and rehabilitation after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!