In primates, the frontal eye field (FEF) contains separate representations of saccadic and smooth-pursuit eye movements. The smooth-pursuit region (FEFsem) in macaque monkeys lies principally in the fundus and deep posterior wall of the arcuate sulcus, between the FEF saccade region (FEFsac) in the anterior wall and somatomotor areas on the posterior wall and convexity. In this study, cortical afferents to FEFsem were mapped by injecting retrograde tracers (WGA-HRP and fast blue) into electrophysiologically identified FEFsem sites in two monkeys. In the frontal lobe, labeled neurons were found mostly on the ipsilateral side in the (1) supplementary eye field region and lateral area F7; (2) area F2 along the superior limb of the arcuate sulcus; and (3) in the buried cortex of the arcuate sulcus extending along the superior and inferior limbs and including FEFsac and adjacent areas 8, 45, and PMv. Labeled cells were also found in the caudal periprincipal cortex (area 46) in one monkey. Labeled cells were found bilaterally in the frontal lobe in the deep posterior walls of the arcuate sulcus and postarcuate spurs and in cingulate motor areas 24 and 24c. In postcentral cortical areas all labeling was ipsilateral and there were two major foci of labeled cells: (1) the depths of the intraparietal sulcus including areas VIP, LIP, and PEa, and (2) the anterior wall and fundus of the superior temporal sulcus including areas PP and MST. Smaller numbers of labeled cells were found in superior temporal sulcal areas FST, MT, and STP, posterior cingulate area 23b, area 3a within the central sulcus, areas SII, RI, Tpt in the lateral sulcus, and parietal areas 7a, 7b, PEc, MIP, DP, and V3A. Many of these posterior afferent cortical areas code visual-motion (MT, MST, and FST) or visual-motion and vestibular (PP, VIP) signals, consistent with the responses of neurons in FEFsem and with the overall physiology and anatomy of the smooth-pursuit eye movement system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-005-2292-z | DOI Listing |
Brain Commun
November 2024
Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.
Understanding and interpreting how words are organized in a sentence to convey distinct meanings is a cornerstone of human communication. The neural underpinnings of this ability, known as syntactic comprehension, are far from agreed upon in current neurocognitive models of language comprehension. Traditionally, left frontal regions (e.
View Article and Find Full Text PDFFront Neuroanat
October 2024
Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye.
Aim of this study was to define sulcal and gyral variations of the lateral parietal cortex and underlying white matter tracts and emphasize the importance of relationship between topographic anatomy of parietal lobe and white matter tracts underlying it in approaches to deep parietal and atrial lesions. Twenty-eight formalin-fixed cerebral hemispheres of 14 adult cadavers were used. Ten hemispheres were dissected from lateral to medial by fiber dissection and all stages were photographed.
View Article and Find Full Text PDFbioRxiv
August 2024
University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA.
Goal-directed reaches give rise to dynamic neural activity across the brain as we move our eyes and arms, and process outcomes. High spatiotemporal resolution mapping of multiple cortical areas will improve our understanding of how these neural computations are spatially and temporally distributed across the brain. In this study, we used micro-electrocorticography (μECoG) recordings in two male monkeys performing visually guided reaches to map information related to eye movements, arm movements, and receiving rewards over a 1.
View Article and Find Full Text PDFBrain Spine
January 2024
Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece.
Introduction: The connectivity of the temporoparietal (TP) region has been the subject of multiple anatomical and functional studies. Its role in high cognitive functions has been primarily correlated with long association fiber connections. As a major sensory integration hub, coactivation of areas within the TP requires a stream of short association fibers running between its subregions.
View Article and Find Full Text PDFJ Neurosurg
August 2024
1Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
Objective: The anatomy and function of the brainstem have fascinated scientists for centuries; however, the brainstem remains one of the least studied regions of the human brain. As the authors delved into studying this structure, they observed a growing tendency to forget or neglect previously identified structures. The aim of this study was to describe two such structures: the transverse peduncular tract, also known as the Gudden tract, and the taenia pontis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!