One of most widely spread causes of hypertrophic cardiomyopathy (HCMP) is mutation in cardiac beta-myosin heavy chain gene. Data on contribution of this mutation to development of HCMP in Russian patients are very limited. We conducted screening of beta-myosin heavy chain gene for the presence of mutations in 116 patients with confirmed HCMP (probands). DHPLC was used with subsequent sequencing of DNA fragments. Genetic defects of beta-myosin heavy chain were found more than in every 10-th patient. These defects were represented by 13 mutations (Ala729Pro mutation was found twice). Phenotypes of majority of known mutations in Russian population did not differ substantially from their phenotypes in other populations. Six mutations had not been previously described; most of them were associated with especially severe clinical and hemodynamic signs and relatively unfavorable course of the disease. Thus beta-myosin heavy chain gene mutation play important role in etiology of HCMP in patients in Russia.

Download full-text PDF

Source

Publication Analysis

Top Keywords

beta-myosin heavy
20
heavy chain
20
chain gene
16
mutation cardiac
8
cardiac beta-myosin
8
mutation
5
beta-myosin
5
heavy
5
chain
5
[the role
4

Similar Publications

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Cirrhotic cardiomyopathy is characterized by both systolic and diastolic dysfunction in patients with cirrhosis, resulting from abnormalities in heart muscle cells (cardiomyocytes) without any underlying heart disease.
  • Changes at the cellular level include altered membrane fluidity and dysfunctional receptors (like beta-adrenergic), as well as issues with calcium and ion transport processes, impacting overall heart function.
  • The heart in cirrhotic patients also undergoes fibrotic changes similar to those in the liver, leading to stiffness and further dysfunction, compounded by excessive cell death of cardiomyocytes.
View Article and Find Full Text PDF

Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.

View Article and Find Full Text PDF

The super-relaxed (SRX) state of myosin ATPase activity is critical for striated muscle function, and its dysregulation is linked to cardiomyopathies. It is unclear whether the SRX state exchanges readily with the disordered-relaxed (DRX) state, and whether the SRX state directly corresponds to the folded back interacting-head motif (IHM). Using recombinant β-cardiac heavy meromyosin (HMM) and subfragment 1 (S1), which cannot form the IHM, we show that the SRX and DRX populations are in rapid equilibrium, dependent on myosin head-tail interactions.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) are phenotypically distinct inherited cardiac diseases. This case report presents a woman aged 51 years with coinheritance of pathogenic/likely pathogenic variants of the β-myosin heavy chain ( p.Glu924Lys) and plakophilin 2 ( p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!