Transgenic plants expressing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) were grown on over 13 million ha in the United States and 22.4 million ha worldwide in 2004. Preventing or slowing the evolution of resistance by insects ("resistance management") is critical for the sustainable use of Bt crops. Plants containing two dissimilar Bt toxin genes in the same plant ("pyramided") have the potential to delay insect resistance. However, the advantage of pyramided Bt plants for resistance management may be compromised if they share similar toxins with single-gene plants that are deployed simultaneously. We tested this hypothesis using a unique model system composed of broccoli plants transformed to express different Cry toxins (Cry1Ac, Cry1C, or both) and a synthetic population of the diamondback moth (Plutella xylostella) carrying genes for resistance to Cry1Ac and Cry1C at frequencies of approximately 0.10 and 0.34, respectively. After 24-26 generations of selection in the greenhouse, the concurrent use of one- and two-gene plants resulted in control failure of both types of Bt plants. When only two-gene plants were used in the selection, no or few insects survived on one- or two-gene Bt plants, indicating that concurrent use of transgenic plants expressing a single and two Bt genes will select for resistance to two-gene plants more rapidly than the use of two-gene plants alone. The results of this experiment agree with the predictions of a Mendelian deterministic simulation model and have important implications for the regulation and deployment of pyramided Bt plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150809PMC
http://dx.doi.org/10.1073/pnas.0409324102DOI Listing

Publication Analysis

Top Keywords

two-gene plants
20
plants
15
transgenic plants
12
plants expressing
12
pyramided plants
12
concurrent transgenic
8
expressing single
8
bacillus thuringiensis
8
cry1ac cry1c
8
one- two-gene
8

Similar Publications

A pathogen strain responsible for sweet potato stem and foliage scab disease was isolated from sweet potato stems. Through a phylogenetic analysis based on the rDNA internal transcribed spacer (ITS) region, combined with morphological methods, the isolated strain was identified as To comprehensively analyze the pathogenicity of the isolated strain from a genetic perspective, the whole-genome sequencing of HD-1 was performed using both the PacBio and Illumina platforms. The genome of HD-1 is about 26.

View Article and Find Full Text PDF

The bacterial pathogen causes fire blight on rosaceous plants, including apples and their wild relatives. The pathogen uses the type III secretion pathogenicity island to inject effector proteins, such as Eop1, into host plants, leading to disease phenotypes in susceptible genotypes. In contrast, resistant genotypes exhibit quantitative resistance associated with genomic regions and/or R-gene-mediated qualitative resistance to withstand the pathogen.

View Article and Find Full Text PDF

: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species.

View Article and Find Full Text PDF

Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including , tomato () and maize ().

View Article and Find Full Text PDF

Synergistic Effect of Two Peptaibols from Biocontrol Fungus Strain 40418 on CO-Induced Plant Resistance.

J Agric Food Chem

September 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

is a filamentous fungus used as a biological control agent against different plant diseases. The multifunctional secondary metabolites synthesized by , called peptaibols, have emerged as key elicitors in plant innate immunity. This study obtained a high-quality genome sequence for the strain 40418 and identified two peptaibol biosynthetic gene clusters using knockout techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!