Background: Three-dimensional electroanatomic voltage mapping offers the potential to identify low-voltage areas that correspond to regions of right ventricular (RV) myocardial loss and fibrofatty replacement in patients with arrhythmogenic RV cardiomyopathy/dysplasia (ARVC/D).
Methods And Results: Thirty-one consecutive patients (22 men and 9 women; mean age, 30.8+/-7 years) who fulfilled the criteria of the Task Force of the European Society of Cardiology and International Society and Federation of Cardiology (ESC/ISFC) for ARVC/D diagnosis after noninvasive clinical evaluation underwent further invasive study including RV electroanatomic voltage mapping and endomyocardial biopsy (EMB) to validate the diagnosis. Multiple RV endocardial, bipolar electrograms (175+/-23) were sampled during sinus rhythm. Twenty patients (group A; 65%) had an abnormal RV electroanatomic voltage mapping showing > or =1 area (mean 2.25+/-0.7) with low-voltage values (bipolar electrogram amplitude <0.5 mV), surrounded by a border zone (0.5 to 1.5 mV) that transitioned into normal myocardium (>1.5 mV). Low-voltage electrograms appeared fractionated with significantly prolonged duration and delayed activation. In 11 patients (group B; 35%), electroanatomic voltage mapping was normal, with preserved electrogram voltage (4.4+/-0.7 mV) and duration (37.2+/-0.9 ms) throughout the RV. Low-voltage areas in patients from group A corresponded to echocardiographic/angiographic RV wall motion abnormalities and were significantly associated with myocyte loss and fibrofatty replacement at EMB (P<0.0001) and familial ARVC/D (P<0.0001). Patients from group B had sporadic disease and histopathological evidence of inflammatory cardiomyopathy (P<0.0001). During the time interval from onset of symptoms to the invasive study, 11 patients (55%) with electroanatomic low-voltage regions received an implantable cardioverter/defibrillator because of life-threatening ventricular arrhythmias, whereas all but 1 patient with a normal voltage map remained stable on antiarrhythmic drug therapy (P=0.02).
Conclusions: Three-dimensional electroanatomic voltage mapping enhanced accuracy for diagnosing ARVC/D (1) by demonstrating low-voltage areas that were associated with fibrofatty myocardial replacement and (2) by identifying a subset of patients who fulfilled ESC/ISFC Task Force diagnostic criteria but showed a preserved electrogram voltage, an inflammatory cardiomyopathy mimicking ARVC/D, and a better arrhythmic outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.486977 | DOI Listing |
Background: Few clinical studies of atrial fibrillation (AF) have focused on Asian patients; data are lacking on current mapping and ablation strategies in the Asia Pacific region (APAC).
Objective: The HD Mapping Observational Study (NCT04022954) was designed to characterize electroanatomic mapping (EAM) with market-released high-density mapping (HDM) catheters in subjects with AF in APAC.
Methods: Subjects undergoing HDM and indicated for radiofrequency ablation (RFA) to treat AF were prospectively enrolled in APAC.
J Clin Med
December 2024
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy.
Pulmonary vein isolation (PVI) represents the cornerstone of paroxysmal (PAF) and persistent atrial fibrillation (PsAF) ablation. Impedance values provide insights on tissue conductive properties. Consecutive patients undergoing PAF and PsAF ablation were prospectively enrolled.
View Article and Find Full Text PDFJ Electrocardiol
December 2024
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA.
Background And Purpose: Atrial fibrillation (AF), a common arrhythmia, is linked with atrial electrical and structural changes, notably low voltage areas (LVAs) which are associated with poor ablation outcomes and increased thromboembolic risk. This study aims to evaluate the efficacy of a deep learning model applied to 12‑lead ECGs for non-invasively predicting the presence of LVAs, potentially guiding pre-ablation strategies and improving patient outcomes.
Methods: A retrospective analysis was conducted on 204 AF patients, who underwent catheter ablation.
J Cardiovasc Electrophysiol
December 2024
Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
Introduction: Atrial late gadolinium enhancement (Atrial-LGE) and electroanatomic voltage mapping (Atrial-EAVM) quantify the anatomical and functional extent of atrial cardiomyopathy. We aimed to explore the relationships between, and outcomes from, these modalities in patients with atrial fibrillation undergoing ablation.
Methods: Patients undergoing first-time ablation had disease severities quantified using both Atrial-LGE and Atrial-EAVM.
Front Cardiovasc Med
December 2024
Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal.
Introduction: Low atrial voltage and slow conduction velocity (CV) have been associated with atrial fibrillation (AF); however, their interaction and relative importance as early disease markers remain incompletely understood. We aimed to elucidate the relationship between atrial voltage and CV using high-density electroanatomic (HDE) maps of patients with AF.
Methods: HDE maps obtained during sinus rhythm in 52 patients with AF and five healthy controls were analysed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!