The role of abscisic acid in plant-pathogen interactions.

Curr Opin Plant Biol

University of Neuchâtel, Faculty of Science, Institute of Botany, Biochemistry and Molecular Biology Laboratory, Rue Emile Argand 11, BP 2, 2007 Neuchâtel, Switzerland.

Published: August 2005

The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows that abscisic acid can also be implicated in increasing the resistance of plants towards pathogens via its positive effect on callose deposition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbi.2005.05.015DOI Listing

Publication Analysis

Top Keywords

abscisic acid
20
disease resistance
8
stress signaling
8
acid
7
role abscisic
4
acid plant-pathogen
4
plant-pathogen interactions
4
interactions abiotic
4
abiotic stress
4
stress hormone
4

Similar Publications

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism.

Plant Physiol

January 2025

Group of Biochemistry and Cell Signalling in Nitric Oxide, University Institute for Research in Olive Groves and Olive Oils, Department of Experimental Biology, Faculty of Experimental Sciences, Campus "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.

-Nitro-fatty acids (NO2-FAs) have emerged as key components of nitric oxide (NO) signalling in eukaryotes. We previously described how nitro-linolenic acid (NO2-Ln), the major NO2-FA detected in plants, regulates S-nitrosoglutathione (GSNO) levels in Arabidopsis (Arabidopsis thaliana). However, the underlying molecular mechanisms remain undefined.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!