The spin-lattice relaxation time (T1) of water protons and the cross-relaxation time (TIS) between irradiated protein protons and observed water protons were measured in order to study water-macromolecular interactions in ischemic rat brain tissues. Tissues were obtained by bilateral common carotid artery occlusion from stroke-prone spontaneously hypertensive rats. Water, Na, and K contents were measured in ischemic brain tissue at the same time. Water and Na content increased while the TIS value and K content decreased following ischemic insults. The T1 value did not change until 180 min after ischemia had been induced. Changes in the TIS value occurred earlier than changes observed for the T1 value, water, and electrolyte contents. Results indicate that the value of TIS may be useful for detecting cerebral ischemia and that the physical structure of water-macromolecular interaction may be altered soon after ischemic onset in brain tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.1910250108DOI Listing

Publication Analysis

Top Keywords

brain tissue
12
ischemic rat
8
rat brain
8
time water
8
water protons
8
observed water
8
ischemic
5
water
5
proton nmr
4
nmr studies
4

Similar Publications

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Roots and early routes of neuroendocrinology.

Cell Tissue Res

January 2025

Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.

Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a "marvellous region", as Wolfgang Bargmann (1975) called it.

View Article and Find Full Text PDF

A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.

Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.

View Article and Find Full Text PDF

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!