Expression and purification of a recombinant peptide from the Alzheimer's beta-amyloid protein for solid-state NMR.

Protein Expr Purif

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.

Published: July 2005

Fibrillar protein aggregates contribute to the pathology of a number of disease states. To facilitate structural studies of these amyloid fibrils by solid-state NMR, efficient methods for the production of milligram quantities of isotopically labeled peptide are necessary. Bacterial expression of recombinant amyloid proteins and peptides allows uniform isotopic labeling, as well as other patterns of isotope incorporation. However, large-scale production of recombinant amyloidogenic peptides has proven particularly difficult, due to their inherent propensity for aggregation and the associated toxicity of fibrillar material. Yields of recombinant protein are further reduced by the small molecular weights of short amyloidogenic fragments. Here, we report high-yield expression and purification of a peptide comprising residues 11-26 of the Alzheimer's beta-amyloid protein (Abeta(11-26)), with homoserine lactone replacing serine at residue 26. Expression in inclusion bodies as a ketosteroid isomerase fusion protein and subsequent purification under denaturing conditions allows production of milligram quantities of uniformly labeled (13)C- and (15)N-labeled peptide, which forms amyloid fibrils suitable for solid-state NMR spectroscopy. Initial structural data obtained by atomic force microscopy, electron microscopy, and solid-state NMR measurements of Abeta(11-26) fibrils are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2005.03.005DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
16
expression purification
8
alzheimer's beta-amyloid
8
beta-amyloid protein
8
amyloid fibrils
8
production milligram
8
milligram quantities
8
protein
5
expression
4
recombinant
4

Similar Publications

Highly efficient heteronuclear polarization transfer using dipolar-echo edited R-symmetry sequences in solid-state NMR.

Chem Sci

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China

In solid-state NMR, dipolar-based heteronuclear polarization transfer has been extensively used for sensitivity enhancement and multidimensional correlations, but its efficiency often suffers from undesired spin interactions and hardware limitations. Herein, we propose a novel dipolar-echo edited R-symmetry (DEER) sequence, which is further incorporated into the INEPT-type scheme, dubbed DEER-INEPT, for achieving highly efficient heteronuclear polarization transfer. Numerical simulations and NMR experiments demonstrate that DEER-INEPT offers significantly improved robustness, enabling efficient polarization transfer under a wide range of MAS conditions, from slow to ultrafast rates, outperforming existing methods.

View Article and Find Full Text PDF

Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb/Cd.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:

In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.

View Article and Find Full Text PDF

The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .

View Article and Find Full Text PDF

Crystal structure determination is a crucial aspect of almost every branch of the chemical sciences, bringing us closer to understanding crystallization, polymorphism, phase transitions, and the relationship between a structure and its physicochemical and functional properties. Unfortunately, many molecules notoriously crystallize as microcrystalline powders, providing a significant challenge in establishing their structures. In this work, we describe the crystal structure determination of three elusive polymorphs of the anti-inflammatory drug meloxicam (MLX) using three approaches, of which only one was successful for each crystal phase.

View Article and Find Full Text PDF

Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!