Production of functional eukaryotic proteins in recombinant form is a bottle-neck in various post-genomic applications and in life science in general. At least partially this is due to the problems associated with the use of endogenous RNA polymerase II for high-level transcription of heterologous genes in eukaryotic expression systems. To circumvent these problems we developed a new inducible protein expression system based on the protozoan host Leishmania tarentolae (Trypanosomatidae). We have created a strain of L. tarentolae constitutively co-expressing T7 RNA polymerase and tetracycline repressor. This strain could be stably transformed with the heterologous target gene under control of the T7 promoter/TET operator assembly, which can initiate transcription upon addition of tetracycline to the culture medium. Using this system, we demonstrated that enhanced green fluorescent protein (EGFP) could be overexpressed to a level of ca. 1% of total cellular protein. The developed system was tested for its ability to inducibly co-express multiple genes. Using two copies of the egfp gene integrated at two different genomic sites, we could obtain expression levels reaching 4% of total cellular protein. Further possible improvements and applications of the developed system are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2005.03.004DOI Listing

Publication Analysis

Top Keywords

inducible protein
8
protein expression
8
expression system
8
system based
8
based protozoan
8
protozoan host
8
host leishmania
8
leishmania tarentolae
8
rna polymerase
8
total cellular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!