A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Physicochemical and biological factors affecting atmospheric methane oxidation in gray forest soils]. | LitMetric

The decline of methane oxidizing activities in gray forest soil upon its conversion into arable land was shown to be caused by major changes in biotic and physicochemical properties of soil. Using the method of immune serums, methane-oxidizing bacteria were detected in both forest and agricultural soils, but their populations differed significantly in both abundance and composition. In the forest soil, the number of methanotrophs was an order of magnitude higher than in arable soil, amounting to 3.5 x 10(8) and 0.24 x 10(8) cells/g soil, respectively. All methane-oxidizing bacteria identified in the forest soil belonged to the genus Methylocystis, and 94% of these were represented by a single species, M. parvus. The arable soil was dominated by type I methanotrophs (Methylobacter and Methylomonas, 67.6%), occurring along with bacteria of the genus Methylocystis. In addition, arable soil is characterized by a low content of microbial biomass, lower porosity and water permeability of soil aggregates, and the predominance of nitrogen mineralization processes over those of nitrogen immobilization. These factors can also contribute to lower rates of methane oxidation in arable soil as compared to forest soil.

Download full-text PDF

Source

Publication Analysis

Top Keywords

forest soil
16
arable soil
16
soil
11
methane oxidation
8
gray forest
8
methane-oxidizing bacteria
8
genus methylocystis
8
forest
6
arable
5
[physicochemical biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!