The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 microE/m2.s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L.d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L.d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.20547 | DOI Listing |
J Bacteriol
January 2025
Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany.
Bacterial degradation of ubiquitous and persistent steroids such as steroid hormones is important for their removal from the environment. Initial studies of steroid degradation in anaerobic bacteria suggested that ring-cleaving hydrolases are involved in oxygen-independent sterane skeleton degradation. However, the enzymes involved in ring A cleavage of the common intermediate androsta-1,4-diene-3,17-dione have remained unknown.
View Article and Find Full Text PDFISME Commun
January 2024
School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, QLD 4072, Australia.
Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal-spatial dataset, from a subtropical hypereutrophic estuary.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
Nano-selenium fertilizers can promote plant growth and nitrogen availability. However, little information is available on the effects of nano-selenium on tea leaf quality, soil nutrient availability and associated microbe-driven mechanisms. This study examined the effects of nano-selenium on the tea leaf quality and soil nitrogen cycling in 20-year-old tea plantations when the leaves were sprayed with ammonium or nitrate.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!