Mechanistic insight into alcohol oxidation by high-valent iron-oxo complexes of heme and nonheme ligands.

Angew Chem Int Ed Engl

Department of Chemistry, Division of Nano Sciences and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea.

Published: July 2005

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200500623DOI Listing

Publication Analysis

Top Keywords

mechanistic insight
4
insight alcohol
4
alcohol oxidation
4
oxidation high-valent
4
high-valent iron-oxo
4
iron-oxo complexes
4
complexes heme
4
heme nonheme
4
nonheme ligands
4
mechanistic
1

Similar Publications

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Heteroconfinement in Single CdTe Nanoplatelets.

ACS Nano

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.

Dimension-engineered synthesis of atomically thin II-VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs.

View Article and Find Full Text PDF

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

The annual fall meeting for the Theobald Smith Society was held in November 2024 on the campus of Rutgers University-New Brunswick. Eighty-six branch members from across New Jersey attended the meeting, composed of undergraduate, graduate, and postdoctoral trainees, faculty members, and government and industry professionals. This report highlights the breadth and diversity of research conducted by American Society for Microbiology members in the Theobald Smith Society and celebrates their groundbreaking discoveries.

View Article and Find Full Text PDF

Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!