Administration of IL-2 to HIV-infected patients leads to expansion of a unique subset of CD4CD45ROCD25 cells. In this study, the origin, clonality, and function of these cells were investigated. Analysis of TCR excision circles revealed that the CD4CD45ROCD25 cells were the product of peripheral expansion but remained polyclonal as determined by TCR repertoire analysis. Phenotypically, these cells were distinct from naturally occurring Tregs; they exhibited intermediate features, between those of memory and naive cells, and had lower susceptibility to apoptosis than CD45ROCD25 or memory T cells. Studies of intracellular cytokine production and proliferation revealed that cytokine-expanded naive CD25 cells had low IL-2 production and required costimulation for proliferation. Despite elevated expression of forkhead transcription factor P3 (foxP3), they exerted only weak suppression compared with CD45ROCD25 cells (Tregs). In summary, in vivo IL-2 administration to HIV-infected patients leads to peripheral expansion of a population of long-lived CD4CD45ROCD25 cells that express high levels of foxP3 but exert weak suppressive function. These CD4CD25 cytokine-expanded naive cells, distinct from antigen-triggered cells and Tregs, play a role in the maintenance of a state of low turnover and sustained expansion of the CD4 T cell pool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142113PMC
http://dx.doi.org/10.1172/JCI24307DOI Listing

Publication Analysis

Top Keywords

cells
12
hiv-infected patients
12
cd4cd45rocd25 cells
12
patients leads
8
peripheral expansion
8
cells distinct
8
naive cells
8
cytokine-expanded naive
8
cells tregs
8
vivo expansion
4

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Live-cell metabolic analyzer protocol for measuring glucose and lactate metabolic changes in human cells.

STAR Protoc

January 2025

Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:

Understanding metabolic conditions related to glycolysis dependence is crucial for developing new treatments in cancer and regenerative medicine. This protocol details a method for using the live-cell metabolic analyzer (LiCellMo) to measure continuous changes in glucose consumption and lactate production in cultured human cells. LiCellMo provides real-time data on consecutive metabolic changes, improving measurements of these processes in various contexts, including in cancer and regenerative treatments.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!