DNA helicases open the duplex during DNA replication, repair and transcription. However, RNA polymerase II is the only member of its family with this requirement; RNA polymerases I and III and bacterial RNA polymerases open DNA without a helicase. In this report, characterization of XPB mutants indicates that its helicase activity is not used for RNA polymerase II promoter opening, which is instead driven by its ATPase activity. The mutants have parallels in sigma(54) bacterial transcription and this suggests a similar mode of opening DNA for both RNA polymerases, involving ATP-dependent enzyme conformational changes. Promoter escape is defective in these XPB mutants, suggesting that the XPB helicase acts as an ATP-driven motor to reorganize the tightly wrapped multiprotein eukaryotic preinitiation complex during the remodeling that precedes elongation and the coupling to RNA processing events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nsmb949 | DOI Listing |
J Biol Chem
October 2022
Department of Systems Biology, Institute for Systems Biology, Seattle, Washington, USA. Electronic address:
TFIIH is an evolutionarily conserved complex that plays central roles in both RNA polymerase II (pol II) transcription and DNA repair. As an integral component of the pol II preinitiation complex, TFIIH regulates pol II enzyme activity in numerous ways. The TFIIH subunit XPB/Ssl2 is an ATP-dependent DNA translocase that stimulates promoter opening prior to transcription initiation.
View Article and Find Full Text PDFCancer Res
September 2022
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington.
Pancreatic ductal adenocarcinoma (PDAC) typically presents as metastatic disease at diagnosis and remains refractory to treatment. Next-generation sequencing efforts have described the genomic landscape, classified molecular subtypes, and confirmed frequent alterations in major driver genes, with coexistent alterations in KRAS and TP53 correlating with the highest metastatic burden and poorest outcomes. However, translating this information to guide therapy remains a challenge.
View Article and Find Full Text PDFFront Mol Biosci
December 2021
Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures.
View Article and Find Full Text PDFJ Virol
March 2020
Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
Human T-cell lymphotropic virus type 1 (HTLV-1) Tax oncoprotein is required for viral gene expression. Tax transactivates the viral promoter by recruiting specific transcription factors but also by interfering with general transcription factors involved in the preinitiation step, such as TFIIA and TFIID. However, data are lacking regarding Tax interplay with TFIIH, which intervenes during the last step of preinitiation.
View Article and Find Full Text PDFInt J Mol Sci
January 2020
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico.
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!