A gel-based dual antibody capture and detection method for assaying of extracellular cytokine secretion: EliCell.

Methods Mol Biol

Department of Medicine, Harvard Thorndike Laboratories, Charles A. Dana Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Published: July 2005

A distinguishing feature of eosinophils is their ability to rapidly release preformed cytokines from intracellular pools. Cytokines are delivered to the cell surface from granule stores by transport vesicles and are released in small packets at discrete locations along the cell surface through a process termed "piecemeal" degranulation. The study of this process has been hindered by lack of an assay sensitive enough to register minute protein concentrations and the inability to visualize morphology of cytokine secreting cells. These hindrances have necessitated our development of the EliCell assay, an agarose-based dual cytokine capture and detection system through which cytokine secretion and cellular morphology may be analyzed in concert. Cells are embedded within capture antibody-containing agarose and stimulated under conditions of interest. Extracellularly released cytokine is captured within the matrix at the point of release from the cell and can be labeled with a fluorochrome-conjugated antibody. Cytokine release and cellular morphology are visualized in parallel by phase contrast and fluorescence microscopy, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716390PMC
http://dx.doi.org/10.1385/1-59259-903-6:297DOI Listing

Publication Analysis

Top Keywords

capture detection
8
cytokine secretion
8
cell surface
8
cellular morphology
8
cytokine
6
gel-based dual
4
dual antibody
4
antibody capture
4
detection method
4
method assaying
4

Similar Publications

Lectin-Mediated Labeling of Alkaline Phosphatase for Enzymatic Silver Deposition-Based Electrochemical Detection of Glycoprotein Tumor Markers.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.

The screening of glycoprotein markers has become an integral part of the in vitro diagnosis of malignant tumors. Herein, an electrochemical method based on alkaline phosphatase (ALP)-mediated enzymatic silver deposition is reported for the highly sensitive detection of glycoprotein tumor markers, in which ALP enzymes are decorated to the glycan moieties of targets via the lectin-carbohydrate interactions. As glycoproteins are conjugated with multiple glycan chains, lectin-mediated labeling can result in the decoration of each target with multiple ALP enzymes.

View Article and Find Full Text PDF

Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs).

View Article and Find Full Text PDF

Nanoplastics in focus: Exploring interdisciplinary approaches and future directions.

NanoImpact

January 2025

Géosciences Rennes, CNRS/Université Rennes, 263 av. Général Leclerc, 35000 Rennes, France.

Nanoplastics (NPs) are gaining increasing attention due to their widespread distribution and potential environmental and biological impacts. Spanning a variety of ecosystems - from soils and rivers to oceans and polar ice - NPs interact with complex biological and geochemical processes, posing risks to organisms across multiple trophic levels. Despite their growing presence, understanding the behavior, transport, and toxicity of nanoplastics remains challenging due to their diverse physical and chemical properties as well as the heterogeneity of environmental matrices.

View Article and Find Full Text PDF

Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor.

Biosens Bioelectron

January 2025

Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:

Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.

View Article and Find Full Text PDF

Multiscale feature enhanced gating network for atrial fibrillation detection.

Comput Methods Programs Biomed

January 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, PR China. Electronic address:

Background And Objective: Atrial fibrillation (AF) is a significant cause of life-threatening heart disease due to its potential to lead to stroke and heart failure. Although deep learning-assisted diagnosis of AF based on ECG holds significance in clinical settings, it remains unsatisfactory due to insufficient consideration of noise and redundant features. In this work, we propose a novel multiscale feature-enhanced gating network (MFEG Net) for AF diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!