A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: involvement of the plasma membrane Ca2+-ATPase and H+-ATPase. | LitMetric

In Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM). Comparable changes of Ca2+ fluxes are also induced by hyperosmotic treatment. However, in this case, the H2O2 level does not rise, but declines below control levels when Ca2+ efflux is activated. Also K+ and H+ net fluxes across the PM and cytoplasmic pH (pH(cyt)) are very differently influenced by the two opposite stresses: strongly decreased by hypoosmotic stress and increased under hyperosmotic treatment. The H2O2 accumulation kinetics, followed as a function of the pH(cyt) changes imposed by modulation of the PM H+-ATPase activity or weak acid treatment, show a close correlation between pH(cyt) and H2O2 formed, a larger amount being produced for changes towards acidic pH values. Overall, these results confirm a relevant role for the PM Ca2+-ATPase in switching off the signal triggering ROS production, and propose a role for the PM H+-ATPase in modulating the development of the oxidative wave through the pH(cyt) changes following the changes of its activity induced by stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci142DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
arabidopsis thaliana
8
plasma membrane
8
ca2+ influx
8
h2o2 accumulation
8
ros production
8
ca2+ efflux
8
h2o2 level
8
hyperosmotic treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!