Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies.

Plant Cell Physiol

Division of Gene Research, Life Science Research Center, Kagawa University, 2393 Ikenobe, Miki-cho Kita-gun, Kagawa, 761-0795 Japan.

Published: August 2005

LOV KELCH PROTEIN2 (LKP2) is an F-box protein that has been postulated to function centrally, or near to the circadian clock oscillator. As a first step to determine which proteins act as substrates of LKP2, yeast two-hybrid screening was performed using LKP2 as bait, and two interaction factors, Di19 and COL1, were isolated. The transiently expressed Di19-GUS fusion protein was localized in the nucleus of Arabidopsis petiole cells. COL1 and other CO/COL family proteins could also interact with LKP1/ZTL, LKP2 or FKF1. The LKP2-binding site in CO or COL1 was near the center of each protein. The CCT motif in CO or COL1 was not sufficient for interaction with LKP2. LKP2 recognized CO with F-box and kelch repeat-containing regions, while it recognized COL1 with an LOV domain. When LKP2 was fused with cyan fluorescent proein (CFP) and transiently expressed in onion epidermal cells, CFP-LKP2 signals were localized in the nucleus and cytosol. Both yellow fluorescent protein (YFP)-CO and YFP-COL1 were located in the nucleus, forming nuclear bodies when they were transiently expressed. However, co-expression of CFP-LKP2 with YFP fused to either CO or COL1 resulted in the recruitment of CFP-LKP2 in nuclear bodies. Furthermore, the CFP-LKP2 and YFP-CO signals co-localized with signals for pU2B''-mRFP, which is a marker for Cajal bodies. These results suggest the possibility that LKP2 functions with CO/COL family proteins in the nuclear bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci144DOI Listing

Publication Analysis

Top Keywords

nuclear bodies
16
transiently expressed
12
lkp2
9
lov kelch
8
kelch protein2
8
localized nucleus
8
co/col family
8
family proteins
8
col1
6
bodies
5

Similar Publications

Mild behavioral impairment and its relation to amyloid load in isolated REM sleep behavior disorder.

Parkinsonism Relat Disord

January 2025

Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.

Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.

View Article and Find Full Text PDF

Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.

View Article and Find Full Text PDF

Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis.

Biochim Biophys Acta Gen Subj

January 2025

Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.

Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover.

View Article and Find Full Text PDF

Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells.

J Mol Biol

January 2025

Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Electronic address:

Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!