Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus.

J Bacteriol

Berkely Structural Genomics Center, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA.

Published: June 2005

The phoU gene of Aquifex aeolicus encodes a protein called PHOU_AQUAE with sequence similarity to the PhoU protein of Escherichia coli. Despite the fact that there is a large number of family members (more than 300) attributed to almost all known bacteria and despite PHOU_AQUAE's association with the regulation of genes for phosphate metabolism, the nature of its regulatory function is not well understood. Nearly one-half of these PhoU-like proteins, including both PHOU_AQUAE and the one from E. coli, form a subfamily with an apparent dimer structure of two PhoU domains on the basis of their amino acid sequence. The crystal structure of PHOU_AQUAE (a 221-amino-acid protein) reveals two similar coiled-coil PhoU domains, each forming a three-helix bundle. The structures of PHOU_AQUAE proteins from both a soluble fraction and refolded inclusion bodies (at resolutions of 2.8 and 3.2A, respectively) showed no significant differences. The folds of the PhoU domain and Bag domains (for a class of cofactors of the eukaryotic chaperone Hsp70 family) are similar. Accordingly, we propose that gene regulation by PhoU may occur by association of PHOU_AQUAE with the ATPase domain of the histidine kinase PhoR, promoting release of its substrate PhoB. Other proteins that share the PhoU domain fold include the coiled-coil domains of the STAT protein, the ribosome-recycling factor, and structural proteins like spectrin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151740PMC
http://dx.doi.org/10.1128/JB.187.12.4238-4244.2005DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
aquifex aeolicus
8
phou domains
8
phou domain
8
phou
7
phou_aquae
5
structure "phou-like"
4
"phou-like" phosphate
4
phosphate uptake
4
uptake regulator
4

Similar Publications

Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.

View Article and Find Full Text PDF

Finding novel efficient nonlinear optical materials with large second-order nonlinearity for the UV spectral range remains a formidable challenge, especially for silicate systems. Using a high-temperature solid reaction in a tight vacuum environment, two ultraviolet nonlinear optical materials with a moderate second harmonic generation (SHG) response have been created: PbSiOC and PbCaSiO. The SHG values they computed are roughly 2.

View Article and Find Full Text PDF

Secupyritines A‒C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.

View Article and Find Full Text PDF

Uranium Extraction from Seawater via Hydrogen Bond Porous Organic Cages.

J Am Chem Soc

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.

View Article and Find Full Text PDF

Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!