IncHI plasmids encode multiple-antibiotic resistance in Salmonella enterica serovar Typhi. These plasmids have been considered to play a relevant role in the persistence and reemergence of this microorganism. The IncHI1 plasmid R27, which can be considered the prototype of IncHI plasmids, is thermosensitive for transfer. Conjugation frequency is highest at low temperature (25 to 30 degrees C), decreasing when temperature increases. R27 codifies an H-NS-like protein (open reading frame 164 [ORF164]) and an Hha-like protein (ORF182). The H-NS and Hha proteins participate in the thermoregulation of gene expression in Escherichia coli. Here we investigated the hypothetical role of such proteins in thermoregulation of R27 conjugation. At a nonpermissive temperature (33 degrees C), transcription of several ORFs in both transfer region 1 (Tra1) and Tra2 from R27 is upregulated in cells depleted of Hha-like and H-NS-like proteins. Both chromosome- and plasmid-encoded Hha and H-NS proteins appear to potentially modulate R27 transfer. The function of R27-encoded Hha-like and H-NS proteins is not restricted to modulation of R27 transfer. Different mutant phenotypes associated with both chromosomal hha and hns mutations are compensated in cells harboring R27.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151748PMC
http://dx.doi.org/10.1128/JB.187.12.3950-3959.2005DOI Listing

Publication Analysis

Top Keywords

h-ns proteins
12
r27
8
chromosome- plasmid-encoded
8
plasmid-encoded hha
8
hha h-ns
8
inchi plasmids
8
temperature degrees
8
r27 transfer
8
proteins
6
transfer
5

Similar Publications

Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium.

Microbiol Res

December 2024

Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China. Electronic address:

H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer.

View Article and Find Full Text PDF

The CRISPR integrases Cas1-Cas2 create immunological memories of viral infection by storing phage-derived DNA in CRISPR arrays, a process known as CRISPR adaptation. A number of host factors have been shown to influence adaptation, but the full pathway from infection to a fully integrated, phage-derived sequences in the array remains incomplete. Here, we deploy a new CRISPRi-based screen to identify putative host factors that participate in CRISPR adaptation in the Escherichia coli Type I-E system.

View Article and Find Full Text PDF

Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS).

View Article and Find Full Text PDF

H-NS, a nucleoid-associated protein (NAP) from enterobacteria, regulates gene expression by dynamically transducing environmental cues to conformational assembly and DNA binding. In this work, we show that H-NS from Escherichia coli, which can assemble into octameric and tetrameric oligomerization states, forms spontaneous micron-sized liquid-like condensates with DNA at sub-physiological concentrations in vitro. The heterotypic condensates are metastable at 298 K, partially solubilizing with time, while still retaining their liquid-like properties.

View Article and Find Full Text PDF
Article Synopsis
  • MucR is a transcriptional regulator found in Brucella species that influences gene expression related to virulence by binding to AT-rich DNA regions.
  • MucR is part of the Ros/MucR family in α-proteobacteria and shares functional similarities with H-NS proteins, although they lack sequence homology.
  • This study uses cryo-EM and other methods to reveal that MucR and its homolog Ml5 form a unique circular structure that can condense DNA, linking nucleoid structure to transcription regulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!