Wolbachia is an intracellular microbe harbored by a wide variety of arthropods (including Drosophila) and filarial nematodes. Employing several different strategies including male killing, induced parthenogenesis, cytoplasmic incompatibility, and feminization, and acting by as-yet-unknown mechanisms, Wolbachia alters host reproduction to increase its representation within a population. Wolbachia is closely associated with gametic incompatibility but also interacts with Drosophila in other, little understood ways. We report here significant and widespread infection of Wolbachia within laboratory stocks and its real and potential impact on Drosophila research. We describe the results of a survey indicating that approximately 30% of stocks currently housed at the Bloomington Drosophila Stock Center are infected with Wolbachia. Cells of both reproductive tissues and numerous somatic organs harbor Wolbachia and display considerable variation in infection levels within and between both tissue types. These results are discussed from the perspective of Wolbachia's potential confounding effects on both host fitness and phenotypic analyses. In addition to this cautionary message, the infection status of stock centers may provide further opportunities to study the genetic basis of host/symbiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449785 | PMC |
http://dx.doi.org/10.1534/genetics.104.038901 | DOI Listing |
Vet Res Commun
December 2024
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia.
View Article and Find Full Text PDFParasit Vectors
December 2024
Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Culex quinquefasciatus plays a crucial role as a vector of West Nile virus (WNV). This mosquito species is widely distributed in Cape Verde, being found in all inhabited islands of the archipelago. However, no data are currently available on the susceptibility of the local mosquito population to WNV.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China. Electronic address:
Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Tarim University, Alar, China.
Introduction: , a parasite on the body surface of sheep, directly attacks the host through biting and sucking blood and may also transmit pathogens in the process. There are currently only a few studies on the microbial composition of , while there are no such studies on pupae.
Methods: In this study, samples AT-1 to AT-4 each contained four individuals, while sample AT-5 comprised four pupae, all used for metagenomic sequencing and analysis.
Appl Environ Microbiol
December 2024
Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia.
mosquitoes are well adapted to dry climates and can retain their eggs for extended periods in the absence of suitable habitat. strains transferred from other insects to mosquitoes can be released to combat dengue transmission by blocking virus replication and spreading through populations, but host fitness costs imposed by , particularly under some environments, can impede spread. We, therefore, assessed the impact of two strains being released for dengue control (AlbB and MelM) on fecundity and egg viability following extended egg retention (up to 24 days) under laboratory conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!