The binding of the antitumoral drug actinomycin D to single- and double-stranded DNA was investigated using molecular modeling in the frame of MM+ molecular mechanics and AM1 semi-empirical method. Two other programs, especially conceived to analyze hydrogen-bonding patterns in biological macromolecules, HBexplore, based on geometrical criteria and SHB_interactions, based on quantum-chemical criteria (Mulliken overlap populations), were also used. The results account for the non-cooperative intercalative binding process previously investigated, and outline the contribution of specific hydrogen bonding as well as CH...O(N) and other atom-atom intermolecular interactions to the stabilization of the actinomycin D-DNA complexes. They also support the hemi-intercalation model proposed in literature for the actinomycin D-ssDNA complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2005.03.004 | DOI Listing |
Acta Chim Slov
June 2022
Institute of Physical Chemistry Ilie Murgulescu, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania.
DNA thermal denaturation was evaluated as a measure of the effect of antitumor drug actinomycin D on the stability of the double helix and also the effect of SDS micelles on actinomycin D - DNA complexes. The results indicated that the melting temperature of DNA was dependent on drug concentration, increasing with actinomycin D concentration. High thermal stabilization (about 10 °C) of the DNA helix after the association with actinomycin D clearly demonstrates the intercalative binding mode.
View Article and Find Full Text PDFJ Mol Graph Model
September 2005
Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Blvd. Elisabeta 4-12, Bucharest RO-70346, Romania.
The binding of the antitumoral drug actinomycin D to single- and double-stranded DNA was investigated using molecular modeling in the frame of MM+ molecular mechanics and AM1 semi-empirical method. Two other programs, especially conceived to analyze hydrogen-bonding patterns in biological macromolecules, HBexplore, based on geometrical criteria and SHB_interactions, based on quantum-chemical criteria (Mulliken overlap populations), were also used. The results account for the non-cooperative intercalative binding process previously investigated, and outline the contribution of specific hydrogen bonding as well as CH.
View Article and Find Full Text PDFJ Biol Chem
May 1989
Department of Chemistry, University of Mississippi, University 38677.
The technique of photoaffinity labeling is applied to the actinomycin D system to provide a novel probe for the examination of the interactions of actinomycin D with nucleic acids. The capacity for covalent attachment of actinomycin D will aid greatly in the study of target-site specificities and the correlations of biological effects with biophysical DNA interactions. Through chemical modification of the parent actinomycin D molecule with a photoreactive azido substituent, a functional analog of the parent actinomycin D is generated having equilibrium binding properties identical to those of the parent molecule yet with the capacity to form a covalent attachment to DNA upon photolysis.
View Article and Find Full Text PDFJ Biomol Struct Dyn
April 1989
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.
We present a comparative analysis of an NMR experiment and molecular and harmonic dynamics simulations of an actinomycin D: d(ATGCAT)2 complex. A comparison of NOE measurements and 1/R6 weighted proton-proton distances confirm the general correctness of the Actinomycin D-DNA model proposed by Sobell. There are, however, some substantial differences between the proton-proton distances inferred from the NOE results and the molecular and harmonic dynamics simulations.
View Article and Find Full Text PDFWe have analyzed the specificity of the actinomycin D-DNA interaction. The 'footprint' method has been used in this investigation. It is shown that: (i) The presence of dinucleotide GC or GG is required for binding of a single drug molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!