A role for both wild-type and expanded ataxin-7 in transcriptional regulation.

Neurobiol Dis

Department of Medical Biosciences, Unit of Medical and Clinical Genetics, Umeå University, SE-901 87 Umeå, Sweden.

Published: December 2005

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease primarily affecting the brainstem, retina and Purkinje cells of the cerebellum. The disease is caused by a polyglutamine expansion in ataxin-7, a protein found in two complexes TFTC and STAGA, involved in transcriptional regulation. Transcriptional dysregulation has been implicated in the pathology of several polyglutamine diseases. In this paper, we analyzed the effect of both wild-type and expanded ataxin-7 on transcription driven by the co-activator CBP and the Purkinje cell expressed nuclear receptor RORalpha1. We could show that transcription mediated by both CBP and RORalpha1 was repressed by expanded ataxin-7. Interestingly, repression of transcription could also be observed with wild-type full-length ataxin-7, not only on CBP- and RORalpha1-mediated transcription, but also on basal transcription. The repression could be counteracted by inhibition of deacetylation, suggesting that ataxin-7 may act as a repressor of transcription by inhibiting the acetylation activity of TFTC and STAGA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2005.04.018DOI Listing

Publication Analysis

Top Keywords

expanded ataxin-7
12
wild-type expanded
8
transcriptional regulation
8
tftc staga
8
ataxin-7
6
transcription
6
role wild-type
4
ataxin-7 transcriptional
4
regulation spinocerebellar
4
spinocerebellar ataxia
4

Similar Publications

Introduction: Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder characterized by cerebellar and retinal degeneration. SCA7 is caused by a CAG-polyglutamine repeat expansion in the ataxin-7 gene, which encodes a transcription factor protein that is a core component of the STAGA co-activator complex. As ataxin-7 protein regularly shuttles between the nucleus and the cytosol, we sought to test if polyglutamine-expanded ataxin-7 protein results in nuclear membrane abnormalities or defects in nucleocytoplasmic (N/C) transport.

View Article and Find Full Text PDF

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs.

View Article and Find Full Text PDF

Development of a Polymeric Pharmacological Nanocarrier System as a Potential Therapy for Spinocerebellar Ataxia Type 7.

Cells

November 2023

Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico.

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS).

View Article and Find Full Text PDF

Coaggregation of polyglutamine (polyQ) proteins is mediated by polyQ-tract interactions and impairs cellular proteostasis.

Acta Biochim Biophys Sin (Shanghai)

May 2023

State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.

Nine polyglutamine (polyQ) proteins have already been identified that are considered to be associated with the pathologies of neurodegenerative disorders called polyQ diseases, but whether these polyQ proteins mutually interact and synergize in proteinopathies remains to be elucidated. In this study, 4 polyQ-containing proteins, androgen receptor (AR), ataxin-7 (Atx7), huntingtin (Htt) and ataxin-3 (Atx3), are used as model molecules to investigate their heterologous coaggregation and consequent impact on cellular proteostasis. Our data indicate that the N-terminal fragment of polyQ-expanded (PQE) Atx7 or Htt can coaggregate with and sequester AR and Atx3 into insoluble aggregates or inclusions through their respective polyQ tracts.

View Article and Find Full Text PDF

RNA Foci Formation in a Retinal Glial Model for Spinocerebellar Ataxia Type 7.

Life (Basel)

December 2022

Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by cerebellar ataxia and retinopathy. SCA7 is caused by a CAG expansion in the gene, which results in an extended polyglutamine (polyQ) tract in the encoded protein, the ataxin-7. PolyQ expanded ataxin-7 elicits neurodegeneration in cerebellar Purkinje cells, however, its impact on the SCA7-associated retinopathy remains to be addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!