In Alzheimer's disease, the complex catabolism of amyloid precursor protein (APP) leads to the production of amyloid-beta (Abeta) peptide, the major component of amyloid deposits. APP is cleaved by beta- and alpha-secretases to generate APP carboxy-terminal fragments (CTFs). Abeta peptide and amyloid intracellular domain are resulting from the cleavage of APP-CTFs by the gamma-secretase. In the present study, we hypothesize that post-translational modification of APP-CTFs could modulate their processing by the gamma-secretase. Inhibition of the gamma-secretase was shown to increase the total amount of APP-CTFs. Moreover, we showed that this increase was more marked among the phosphorylated variants and directly related to the activity of the gamma-secretase, as shown by kinetics analyses. Phosphorylated CTFs were shown to associate to presenilin 1, a major protein of the gamma-secretase complex. The phosphorylation of CTFs at the threonine 668 resulting of the c-Jun N-terminal kinase activation was shown to enhance their degradation by the gamma-secretase. Altogether, our results demonstrated that phosphorylated CTFs can be the substrates of the gamma-secretase and that an increase in the phosphorylation of APP-CTFs facilitates their processing by gamma-secretase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2005.05.004DOI Listing

Publication Analysis

Top Keywords

amyloid precursor
8
carboxy-terminal fragments
8
abeta peptide
8
gamma-secretase
8
processing gamma-secretase
8
gamma-secretase increase
8
phosphorylated ctfs
8
phosphorylation amyloid
4
precursor carboxy-terminal
4
fragments enhances
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.

View Article and Find Full Text PDF

Background: Focusing on novel AD treatments, the TREAT-AD centers offer an array of free research tools, shared via the AD Knowledge Portal in a Target Enablement Package (TEP). This abstract showcases the research conducted by the IUSM-Purdue TREAT-AD Center, specifically focusing on Targeting class-II PI3K's as a potential breakthrough in AD therapy. Endocytosis within the brain encompasses diverse pathways for internalizing extracellular cargoes and receptors into cells.

View Article and Find Full Text PDF

Background: Our lab has developed a CRISPR-based, gene-editing strategy that targets the extreme C-terminus (C-term) of APP (amyloid precursor protein) - a gene with a central and indisputable role in AD. We have reported previously that APP C-terminus CRISPRs effectively attenuate APP β-cleavage and Alzheimer's pathology in vivo. Here, we present new data demonstrating the feasibility and efficacy of a clinically-viable, "all-in-one" therapeutic vector that has all the components needed for APP C-terminus editing (Cas enzyme / gRNAs / regulatory elements) packaged into a single AAV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!