Dimemorfan N-demethylation by mouse liver microsomal cytochrome P450 enzymes.

Life Sci

Department of Pharmacy, Department of Internal Medicine, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C.

Published: July 2005

Dimemorfan (d-3-methyl-N-methylmorphinan), an analogue of dextromethorphan, is commonly used as a non-opioid antitussive. To clarify the contribution of cytochrome P450 (P450) in dimemorfan N-demethylation, effects of selective inducers and inhibitors were studied in ICR mice. Phenobarbital (PB)- and dexamethasone (Dex)-treatments caused 5-fold increases of liver microsomal dimemorfan N-demethylation activity. In untreated mouse liver microsomes, demethylation activity was strongly inhibited by a CYP3A inhibitor, ketoconazole. In PB-and Dex-treated mouse liver microsomes, ketoconazole caused strong inhibition, whereas orphenadrine caused a decrease of less than 20%. Pretreatment of control mouse liver microsomes with anti-CYP3A inhibited demethylation activity, whereas pre-treatment with anti-CYP2B had no effect. In PB-and Dex-treated mouse liver microsomes, the demethylation activity was inhibited by both anti-CYP3A and anti-CYP2B. In control mice, the intrinsic clearance of dimemorfan from N-demethylation was 5.8 microl min(-1)mg protein(-1). In PB- and Dex-treated mice, the correlation coefficient of fitting using one-enzyme and two-enzyme models were similar. The intrinsic clearances of induced mouse liver microsomes were similar. These results revealed that CYP3A played a major role in hepatic demethylation in untreated mice. Both CYP3A and CYP2B were involved in this demethylation in PB- and Dex-treated mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2004.11.037DOI Listing

Publication Analysis

Top Keywords

mouse liver
24
liver microsomes
20
dimemorfan n-demethylation
16
demethylation activity
12
liver microsomal
8
cytochrome p450
8
microsomes demethylation
8
activity inhibited
8
pb-and dex-treated
8
dex-treated mouse
8

Similar Publications

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Potential therapeutic effect of dimethyl fumarate on Treg/Th17 cell imbalance in biliary atresia.

Clin Immunol

January 2025

Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:

The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.

View Article and Find Full Text PDF

Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation.

Chem Biol Interact

January 2025

Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:

Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!