Quantitative determination of volatile organic compounds in indoor dust using gas chromatography-UV spectrometry.

Environ Int

Department of Molecular and Clinical Medicine, Division of Occupational and Environmental Medicine, Linköping University, S-581 83 Linköping, Sweden.

Published: October 2005

A novel technique, gas chromatography-UV spectrometry (GC-UV), was used to quantify volatile organic compounds (VOCs) in settled dust from 389 residences in Sweden. The dust samples were thermally desorbed in an inert atmosphere and evaporated compounds were concentrated by solid phase micro extraction and separated by capillary GC. Eluting compounds were then detected, identified, and quantified using a diode array UV spectrophotometer. Altogether, 28 compounds were quantified in each sample; 24 of these were found in more than 50% of the samples. The compounds found in highest concentrations were saturated aldehydes (C5-C10), furfuryl alcohol, 2,6-di-tert-butyl-4-methylphenol (BHT), 2-furaldehyde, and benzaldehyde. Alkenals were also found, notably 2-butenal (crotonaldehyde), 2-methyl-propenal (methacrolein), hexenal, heptenal, octenal, and nonenal. The concentrations of each of the 28 compounds ranged between two to three orders of magnitude, or even more. These results demonstrate the presence of a number of VOCs in indoor dust, and provide, for the first time, a quantitative determination of these compounds in a larger number of dust samples from residents. The findings also illustrate the potential use of GC-UV for analysing volatile compounds in indoor dust, some of which are potential irritants (to the skin, eyes or respiratory system) if present at higher concentrations. The potential use of GC-UV for improving survey and control of the human exposure to particle-bound irritants and other chemicals is inferred.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2005.04.003DOI Listing

Publication Analysis

Top Keywords

indoor dust
12
compounds
9
quantitative determination
8
volatile organic
8
organic compounds
8
compounds indoor
8
gas chromatography-uv
8
chromatography-uv spectrometry
8
dust samples
8
potential gc-uv
8

Similar Publications

Resuspended particles from human activities can contribute to pathogen exposure via airborne fomite contamination in built environments. Studies investigating the dissemination of resuspended viruses are limited. The goal of this study was to explore viral dissemination after aerosolized resuspension via human activities on indoor flooring.

View Article and Find Full Text PDF

The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.

View Article and Find Full Text PDF

Assessment of modeled serum per- and polyfluoroalkyl substances concentrations from exposure estimates for pregnant women in the general population in comparison to previously measured serum concentrations.

Environ Res

January 2025

Department of Environmental and Occupational Health, University of California, Irvine, CA, USA; Department of Statistics, University of California, Irvine, CA, USA; Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA.

Article Synopsis
  • The study investigates PFAS exposure rates during pregnancy, focusing on ingestion of food and indoor dust as primary sources.
  • It uses published dietary intake estimates and a pharmacokinetic model to predict serum concentrations of PFAS in pregnant women, comparing these predictions with actual measured levels.
  • Results suggest that lower dietary intake estimates effectively predict maternal serum PFAS concentrations, while higher estimates tend to overestimate levels, indicating that careful selection of intake data is crucial for accurate predictions.
View Article and Find Full Text PDF

Rhinitis is one of the most common respiratory diseases, influenced by various environmental factors such as green space, air pollution and indoor microbiomes. However, their interactions and combined effects have not been reported. We recruited 1121 preschool children from day care centers in a northern city of China.

View Article and Find Full Text PDF

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!