Bovine serum amine oxidase (BSAO) oxidatively deaminates polyamines containing primary amine groups, spermidine and spermine, to form the cytotoxic products hydrogen peroxide and aldehyde(s). Polyamines are present at elevated levels in many tumor tissues. The aims of the study were to evaluate the anti-tumoral activities of native and immobilized BSAO in mouse melanoma and also to determine the mechanism of tumor cell death. C57BL mice received a subcutaneous injection of B16 melanoma cells to induce formation of tumors, prior to antitumor treatments with native and immobilized BSAO. The enzyme was immobilized in a poly(ethylene glycol) (PEG) biocompatible matrix. Antitumor treatments consisted of a single injection of enzyme into the tumor. When immobilized BSAO (2.5mU) was injected into the tumor, there was a marked decrease of 70% of the tumor growth. This was compared with a decrease of only 32% of tumor size when the same amount of native BSAO was administered. The type of cell death was analysed in tumors that were treated with native or immobilized BSAO. When tumors were treated with immobilized BSAO, there was induction of a high level of apoptosis (around 70%), compared to less than 10% with the native enzyme. Apoptotic cell death was assessed by nuclear chromatin condensation using Hoechst staining and labelling of externalized phosphatidylserine using Annexin V. However, native BSAO, probably due to a burst of cytotoxic products, induced a high level of necrosis of about 40%, compared to less than 10% with immobilized BSAO. In conclusion, the advantage is that immobilized BSAO can act by allowing the slow release of cytotoxic products, which induces tumor cell death by apoptosis rather than necrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2005.02.025 | DOI Listing |
Int J Mol Sci
October 2022
Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
Protein-nanoparticle hybrids represent entities characterized by emerging biological properties that can significantly differ from those of the parent components. Herein, bovine serum amine oxidase (i.e.
View Article and Find Full Text PDFChemistry
May 2016
Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, Legnaro, 35020 (PD), Italy.
Dichromate binds to surface-active maghemite nanoparticles (SAMNs) to form a stable core-shell nanostructures (SAMN@Cr(VI) ). The hybrid was characterized by Mössbauer spectroscopy, high-angle annular dark-field imaging, electron energy-loss spectroscopy, and electrochemical techniques, which revealed a strong interaction of dichromate with the nanoparticle surface. Electrochemical characterization showed lower charge-transfer resistance, better electrochemical performance, and more reversible electrochemical behavior with respect to naked SAMNs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2015
Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy.
Core-shell gold nanoparticles [AuNPs], stabilized with a hydrophilic polymer, poly(3-dimethylammonium-1-propyne hydrochloride) [PDMPAHCl], have been used for the immobilization of bovine serum amine oxidase [BSAO]. The functionalized surface of the hybrid nanoparticles is pH responsive, due to the presence of aminic groups that carry out a double role: on one hand they act as ligands for the gold nanoparticle surface, allowing the colloidal stabilization and, on the other hand, they give a hydrophilic characteristic to the whole colloidal suspension. The core-shell nanoparticles [Au@PDMPAHCl] have been characterized by using UV-vis and X-ray photoelectron spectroscopy, DLS, ζ-potential measurements and by FE-TEM microscopy.
View Article and Find Full Text PDFMacromol Biosci
September 2013
Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy.
An alternative anticancer therapy based on the use of bovine serum amine oxidase (BSAO), an enzyme that converts polyamines over-expressed in malignant cells, into hydrogen peroxide and aldehyde(s), thus inducing high cytotoxicity in cancer cells, was recently proposed. With the aim of improving the system efficacy by exploiting a nanotechnology approach, BSAO is covalently immobilized onto injectable nanohydrogels (NHs) based on cholesterol-graft-hyaluronic acid (HA-CH), a biocompatible conjugate that spontaneously leads to self-assembled structures in aqueous solutions. In this study, the physicochemical properties of the HA-CH-based NHs and the NHs cytocompatibility are reported.
View Article and Find Full Text PDFInt J Nanomedicine
September 2012
Department of Biological Chemistry, University of Padua, Padua, Italy.
Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN-RITC-BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!