We examined the role of the IkappaB kinase complex in nerve growth factor (NGF)-induced neuronal differentiation of PC12 cells. We showed that neurite outgrowth is accompanied by an activation of the IKK complex and a delayed elevation of NF-kappaB-dependent transcription. Ectopic expression of a constitutively active form of IKK2 but not of IKK1 promoted neurite outgrowth in the absence of NGF. In addition, increased expression of Bcl-2 and Bcl-xL and resistance to apoptosis upon serum withdrawal were found. The IKK2-driven neurite outgrowth was not blocked by MEK1/2 and PI3K inhibitors but was repressed by the SN50 peptide suggesting that NF-kappaB activation is critical for this differentiation process. Transdominant mutants of IkappaBalpha (32/36-SS/AA) and IKK1 only marginally reduced NGF-driven neuritogenesis. However, a dominant negative mutant of IKK2 or an IkappaBalpha protein lacking the complete N-terminus was able to repress neuritogenesis. We also detected tyrosine phosphorylation of IkappaBalpha during differentiation. Consequently, PC12 cells expressing mutant IkappaBalpha (Y42F) show an impaired neuritogenesis. Furthermore, PC12 cells ectopically expressing p65 show almost no signs of neurite outgrowth which is, however, found to some extent in c-Rel-expressing cells. Our data suggest that NGF-induced PC12 differentiation includes activation of IKK2 which may promote the release of c-Rel-containing dimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2005.03148.x | DOI Listing |
J Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFFoods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFExp Cell Res
January 2025
Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Tissue Cell
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!