Regulation and expression of E-cadherin and other adhesion molecules were evaluated after exposure to a selective inhibitor of the Src family of tyrosine kinases and inducer of E-cadherin, PP2. E-cadherin is located within the intercellular junction, and it is involved in the management of paracellular permeability of various epithelial barriers in the body. Epithelial cell lines HCT-116, HT29, Caco-2, LS174T, and ARPE-19 were examined for morphological, functional, protein, and mRNA changes following 20 microM PP2 treatment. PP2 treatment caused cell clustering in Caco-2, HT29, and HCT-116 cells. E-cadherin also redistributed to the points of cell contact in Caco-2 cells. These changes suggest increased E-cadherin-dependent cell adhesion. Studies evaluating transepithelial electrical resistance, an established measurement of paracellular permeability, displayed increases in resistance for the Caco-2 cells following PP2 treatment, which correlates with our microscopy data. In addition, E-cadherin protein levels increased for all cells except HCT-116. ARPE-19 cells did not express E-cadherin at the protein or mRNA level. Expression of adhesion molecules varied for the cell lines, and only Claudin 3 mRNA expression was significantly increased in the three intestinal cell lines treated with PP2. Overall, our data suggest that E-cadherin is positively regulated by inhibition of Src tyrosine kinases at the functional and protein expression levels within these epithelial cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp0499003DOI Listing

Publication Analysis

Top Keywords

cell lines
20
adhesion molecules
12
epithelial cell
12
pp2 treatment
12
cell adhesion
8
cell
8
treatment pp2
8
tyrosine kinases
8
paracellular permeability
8
functional protein
8

Similar Publications

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most deadly cancer diagnosed in both men and women. 5-Fluorouracil (5-FU) treatment frequently causes the CRC cells to become chemoresistance, which has a negative impact on prognosis. Using bioinformatic techniques, this work describes important genes and biological pathways linked to 5-FU resistance in CRC cells.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!