Objective: Cortisol, the biologically active glucocorticoid, is a major endogenous antiinflammatory factor in rheumatoid arthritis (RA). The aim of this study was to examine the local conversion of cortisol to biologically inactive cortisone and vice versa (the cortisol-cortisone shuttle) in RA and osteoarthritis (OA) patients.
Methods: Thin-layer chromatography and phosphorimaging were used to examine the cortisol-cortisone shuttle in mixed synovial cells. Double immunohistochemistry was used to assess the key enzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2 and their possible cellular locations.
Results: Double immunohistochemistry demonstrated 11beta-HSD1/2+ macrophages in the sublining area. The ratio of 11beta-HSD2+ cells to 11beta-HSD1+ cells was significantly higher in RA than in OA patients. Cortisol was converted to inactive cortisone in mixed synovial cells from RA and OA patients, which was largely inhibited by carbenoxolone (11beta-HSD1 and 11beta-HSD2 inhibitor). Using metyrapone to inhibit the 11beta-HSD1 reducing reaction (cortisone --> cortisol), we demonstrated that the capacity for reactivation of cortisone to cortisol was significantly higher in OA than in RA patients. Although the capacity for the cortisone-cortisol shuttle was higher in synovial cells from less-inflamed OA tissue compared with inflamed RA tissue, it was obvious that synovial inflammation in RA, but not OA, was related positively to the reactivation of cortisone. This indicates that in RA, a cause other than typical inflammatory factors inhibits the reactivation of cortisone. Since isoproterenol and adenosine inhibited the cortisol-cortisone shuttle, the loss of sympathetic nerve fibers (loss of beta-adrenergic agonist and adenosine) may be the missing link that accounts for the increased cortisol-cortisone shuttle in RA.
Conclusion: This study demonstrates a reduced capacity for local reactivation of cortisone in RA synovial cells. Since synthetic glucocorticoids also use this reactivation shuttle, the results also apply to therapeutic glucocorticoids. This defective reactivation of cortisone may be an important unrecognized pathophysiologic factor in RA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.21091 | DOI Listing |
Curr Rheumatol Rep
January 2025
Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia.
Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.
View Article and Find Full Text PDFNutrients
January 2025
Department of Anesthesiology, Cathay General Hospital, Taipei 280, Taiwan.
Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior cruciate ligament transection and meniscectomy (ACLT + MMx). Male Wistar rats were categorized into five groups: control, curcumin-treated (100 mg/kg/day), vitamin D-treated (25 µg/kg/day), a combination of vitamin D and curcumin, and sham-operated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan. Electronic address:
C-type natriuretic peptide (CNP) can be a new disease-modifying anti-osteoarthritis drug (DMOAD) candidate because intraarticular injection of CNP attenuates both articular cartilage degradation and persistent pain in a rat knee arthritis model. This study aimed to elucidate the underlying molecular mechanisms by which CNP protects the knee joint from osteoarthritic changes. Gene expression analyses indicated that CNP did not interfere with the expression of IL1β -responsive genes in rat primary synovial fibroblasts or the monocytic cell line, RAW264.
View Article and Find Full Text PDFJ Pers Med
January 2025
Department of Applied Science, South East Technological University, R93 V960 Carlow, Ireland.
This study investigated the inflammatory responses of fibroblast-like synoviocytes (FLS) isolated from osteoarthritis (OA) patients, stimulated with lipopolysaccharide (LPS) and interleukin-6 (IL-6). Both experimental and synthetic data were utilised to investigate the variability in IL-6 and myeloperoxidase (MPO) production and its implications for OA pathogenesis. Synovial biopsies were obtained from OA patients undergoing joint replacement surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!