Background: There is a need for integrative and quantitative methods to investigate the structural and functional relations among elements of complex systems, such as the neurovascular unit (NVU), that involve multiple cell types, microvasculatures, and various genomic/proteomic/ionic functional entities.
Methods: Vascular casting and selective labeling enabled simultaneous three-dimensional imaging of the microvasculature, cell nuclei, and cytoplasmic stains. Multidimensional segmentation was achieved by (i) bleed-through removal and attenuation correction; (ii) independent segmentation and morphometry for each corrected channel; and (iii) spatially associative feature computation across channels. The combined measurements enabled cell classification based on nuclear morphometry, cytoplasmic signals, and distance from vascular elements. Specific spatial relations among the NVU elements could be quantified.
Results: A software system combining nuclear and vessel segmentation codes and associative features was constructed and validated. Biological variability contributed to misidentified nuclei (9.3%), undersegmentation of nuclei (3.7%), hypersegmentation of nuclei (14%), and missed nuclei (4.7%). Microvessel segmentation errors occurred rarely, mainly due to nonuniform lumen staining.
Conclusions: Associative features across fluorescence channels, in combination with standard features, enable integrative structural and functional analysis of the NVU. By labeling additional structural and functional entities, this method can be scaled up to larger-scale systems biology studies that integrate spatial and molecular information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.20149 | DOI Listing |
ACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
4Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland.
: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!