Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Endothelium-derived hyperpolarizing factor (EDHF) and K+ are vasodilators in the cerebral circulation. Recently, K+ has been suggested to contribute to EDHF-mediated responses in peripheral vessels. The EDHF response to the protease-activated receptor 2 ligand SLIGRL was characterized in cerebral arteries and used to assess whether K+ contributes as an EDHF.
Methods: Rat middle cerebral arteries were mounted in either a wire or pressure myograph. Concentration-response curves to SLIGRL and K+ were constructed in the presence and absence of a variety of blocking agents. In some experiments, changes in tension and smooth muscle cell membrane potential were recorded simultaneously.
Results: SLIGRL (0.02 to 20 micromol/L) stimulated concentration and endothelium-dependent relaxation. In the presence of NG-nitro-L-arginine methyl ester, relaxation to SLIGRL was associated with hyperpolarization and sensitivity to a specific inhibitor of IKCa, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (1 micromol/L), reflecting activation of EDHF. Combined inhibition of KIR with Ba2+ (30 micromol/L) and Na+/K+-ATPase with ouabain (1 micromol/L) markedly attenuated the relaxation to EDHF. Raising extracellular [K+] to 15 mmol/L also stimulated smooth muscle relaxation and hyperpolarization, which was also attenuated by combined application of Ba2+ and ouabain.
Conclusions: SLIGRL evokes EDHF-mediated relaxation in the rat middle cerebral artery, underpinned by hyperpolarization of the smooth muscle. The profile of blockade of EDHF-mediated hyperpolarization and relaxation supports a pivotal role for IKCa channels. Furthermore, similar inhibition of responses to EDHF and exogenous K+ with Ba2+ and ouabain suggests that K+ may contribute as an EDHF in the middle cerebral artery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.STR.0000169929.66497.73 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!