Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tissue engineering of articular cartilage requires accurate imaging of the chondrocyte cytoskeleton. Past studies have applied various fixation and permeabilization protocols without optimization of parameters. In this study, we have examined procedures using glutaraldehyde and paraformaldehyde as fixatives and Triton X-100 and Octyl-POE as permeabilizing detergents. A four-color fluorescence confocal method was developed to simultaneously image actin, tubulin, vimentin, and the nucleus. We found optimal preservation and morphology of the chondrocyte cytoskeleton after simultaneous fixation and permeabilization with glutaraldehyde and Triton X-100. These images displayed less cellular shrinkage and higher-resolution filamentous structures than with paraformaldehyde or when permeabilization followed fixation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1369/jhc.5B6728.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!