Background: Studies suggest that nasal treatment might influence lower airway symptoms and function in patients with comorbid rhinitis and asthma. We investigated the effect of intranasal, inhaled corticosteroid or the combination of both in patients with both pollen-induced rhinitis and asthma.

Methods: A total of 262 patients were randomized to 6 weeks' treatment with intranasal fluticasone propionate (INFP) 200 microg o.d., inhaled fluticasone propionate (IHFP) 250 microg b.i.d., their combination, or intranasal or inhaled placebo, in a multicentre, double-blind, parallel-group study. Treatment was started 2 weeks prior to the pollen season and patients recorded their nasal and bronchial symptoms twice daily. Before and after 4 and 6 weeks' treatment, the patients were assessed for lung function, methacholine responsiveness, and induced sputum cell counts.

Results: Intranasal fluticasone propionate significantly increased the percentages of patients reporting no nasal blockage, sneezing, or rhinorrhoea during the pollen season, compared with IHFP or intranasal or inhaled placebo. In contrast, only IHFP significantly improved morning peak-flow, forced expiratory volume in 1 second (FEV1) and methacholine PD20, and the seasonal increase in the sputum eosinophils and methacholine responsiveness.

Conclusions: In patients with pollen-induced rhinitis and asthma, the combination of intranasal and IHFP is needed to control the seasonal increase in nasal and asthmatic symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1398-9995.2005.00819.xDOI Listing

Publication Analysis

Top Keywords

intranasal inhaled
16
fluticasone propionate
16
pollen-induced rhinitis
12
rhinitis asthma
12
inhaled fluticasone
8
patients pollen-induced
8
weeks' treatment
8
intranasal fluticasone
8
combination intranasal
8
inhaled placebo
8

Similar Publications

Pulmonary microbiota disruption by respiratory exposure to carbon quantum dots induces neuronal damages in mice.

J Hazard Mater

January 2025

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, China; School of Public Health, Southeast University, Nanjing 210009, China; Yancheng Kindergarten Teachers College, Yancheng 224005, China.

Given the fact that carbon quantum dots (CQDs) have been commercially produced in quantities, it is inevitable to make their ways into environment and interact closely with the public. Even though CQDs in the environment have been reported to damage the central nervous system, the underlying mechanisms of neurotoxic effects of CQDs following respiratory exposure is still not clear. Intranasal instilled CQDs, mimicking respiratory exposure, induces neurobehavioral impairments associated with neuronal cell death of ferroptosis and disulfidptosis that is regulated by metabolic reprogramming of glutathione and cysteine pathways in the cortex and hippocampus where CQDs were hardly accumulated.

View Article and Find Full Text PDF

Preclinical model of Mycobacteroides abscessus lung disease by nose-only exposure of mice to bacterial powder aerosol.

Tuberculosis (Edinb)

January 2025

CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India. Electronic address:

The limitations of existing mouse models of lung infection with Mycobacteroides abscessus impede drug discovery and development. In contrast to current animal models that introduce NTM intravenously or by intranasal/intra-tracheal instillation or via bronchoscopy-guided insufflation, we developed a dry powder inhalation (DPI) of M. abscessus ATCC 19977 that generated paucibacillary lung infection and histopathology in immunocompetent mice.

View Article and Find Full Text PDF

Inhalation of crystalline silica particles causes silicosis, which is a severe inflammatory lung disease that is associated with granulomatous and fibrotic responses. We investigated whether silica-induced silicosis might promote airway hyperreactivity (AHR) and the role of TNF-α and thalidomide in this process. Mice received an intranasal instillation of silica particles (1.

View Article and Find Full Text PDF

Background: NSAID-exacerbated respiratory disease (N-ERD) is a hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin or ibuprofen, accompanied by chronic rhinosinusitis (with or without nasal polyps) or asthma. The prevalence of hypersensitivity to NSAIDs is estimated to be 2%. The first line of treatment is the avoidance of NSAIDs.

View Article and Find Full Text PDF

Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model.

Int Immunopharmacol

January 2025

Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!