Unlabelled: The use of tissue engineering for cartilage repair has emerged as a potential therapeutic option and has led to the development of Hyalograft C, a tissue-engineered graft composed of autologous chondrocytes grown on a scaffold entirely made of HYAFF 11, an esterified derivative of hyaluronic acid. Here we present the results of an ongoing multicenter clinical study conducted with the primary objective to investigate the subjective symptomatic, functional and health-related quality of life outcomes of patients treated with Hyalograft C. Clinical results on the cohort of 141 patients with followup assessments ranging from 2 to 5 years (average followup time: 38 months), are reported. At followup 91.5% of patients improved according to the International Knee Documentation Committee subjective evaluation; 76% and 88% of patients had no pain and mobility problems respectively assessed by the EuroQol-EQ5D measure. Furthermore, 95.7% of the patients had their treated knee normal or nearly normal as assessed by the surgeon; cartilage repair was graded arthroscopically as normal or nearly normal in 96.4% of the scored knees; the majority of the second-look biopsies of the grafted site histologically were assessed as hyaline-like. Importantly, a very limited complication rate was recorded in this study. The positive clinical results obtained indicate that Hyalograft C is a safe and effective therapeutic option for the treatment of articular cartilage lesions.

Level Of Evidence: Therapeutic study, Level III-2 (retrospective cohort study). See the Guidelines for Authors for a complete description of levels of evidence.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.blo.0000165737.87628.5bDOI Listing

Publication Analysis

Top Keywords

articular cartilage
8
cartilage repair
8
therapeutic option
8
patients treated
8
normal normal
8
patients
5
cartilage engineering
4
hyalograft
4
engineering hyalograft
4
hyalograft 3-year
4

Similar Publications

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.

View Article and Find Full Text PDF

Applications of Chitosan and its Derivatives in the Treatment of Osteoarthritis.

Aging Dis

December 2024

Shandong Laboratory of Biomedical Materials Engineering, Success Bio-Tech Co., Ltd., Jinan, China.

Osteoarthritis (OA) is a common joint disease, which is mainly characterized by the degeneration of articular cartilage, inflammation of the synovial membrane of the joint, and changes in the surrounding bone tissue. With the increase of age and weight, the incidence of OA gradually increases, which seriously affects the quality of life of patients. The primary pharmacological treatments for OA include analgesics and non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Background: It is known that open wedge high tibial osteotomy (OWHTO) may lead to progression of patellofemoral degeneration due to descent of the patellar height. However, the difference in patellofemoral joint (PFJ) loads with normal daily activity between uniplane and biplane osteotomies is unclear. The purpose of this study was to reveal the differences in PFJ biomechanics between uniplane and biplane OWHTO using finite element analysis (FEA).

View Article and Find Full Text PDF

Adipose-derived mesenchymal stem cells combined with platelet-rich plasma are superior options for the treatment of osteoarthritis.

J Orthop Surg Res

January 2025

Department of Center of Precision Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China.

Background: There is currently no definitive treatment for osteoarthritis. We examined the therapeutic effects and underlying mechanisms of platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells (ADSCs), individually or in combination, in a rat model of anterior cruciate ligament-induced degenerative osteoarthritis (OA) of the knee. This study seeks to advance clinical approaches to OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!