Little is known about the correlation between degree of mineralization and collagen properties (enzymatic and non-enzymatic cross-links) in bone. In the patients with femoral neck fracture, not only the mineral embrittlement but also the qualitative changes in collagen cross-links were observed in both low and high mineralized bone fractions. These results suggest that this trend towards an increased loss of collagen quality may have led to accelerated increase of fragility in osteoporosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

degree mineralization
8
mineralization collagen
8
collagen cross-links
8
[correlation degree
4
collagen
4
cross-links determinants
4
determinants bone
4
bone quality]
4
quality] correlation
4
correlation degree
4

Similar Publications

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

Background: Sika deer (, 1838) antler is a highly esteemed tonic renowned for its abundant assortment of polypeptides, polysaccharides, amino acids, and minerals, and is recognized for its multifarious pharmacological properties. However, limited research has been conducted regarding the variation in composition of deer antlers between the upper and basal sections, as well as their pharmacological effects on immunological activity and anti-fatigue in mice. The objective of this study was to conduct a comprehensive analysis on the appearance, chemical composition, and pharmacological effects of different components within sika deer antlers.

View Article and Find Full Text PDF

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Automated segmentation and detection of tumors in CT scans of the liver and kidney have a significant potential in assisting clinicians with cancer diagnosis and treatment planning. However, current approaches, including state-of-the-art deep learning ones, still face many challenges. Many tumors are not detected by these approaches when tested on public datasets for tumor detection and segmentation such as the Kidney Tumor Segmentation Challenge (KiTS) and the Liver tumor segmentation challenge (LiTS).

View Article and Find Full Text PDF

Microplastics Generate Less Mineral Protection of Soil Carbon and More CO Emissions.

Adv Sci (Weinh)

December 2024

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.

Microplastic pollution in terrestrial ecosystems threatens to destabilize large soil carbon stocks that help to mitigate climate change. Carbon-based substrates can release from microplastics and contribute to terrestrial carbon pools, but how these emerging organic compounds influence carbon mineralization and sequestration remains unknown. Here, microcosm experiments are conducted to determine the bioavailability of microplastic-derived dissolved organic matter (MP-DOM) in soils and its contribution to mineral-associated carbon pool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!