A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. | LitMetric

Crystallization trials at the Division of Structural Biology in Oxford are now almost exclusively carried out using a high-throughput workflow implemented in the Oxford Protein Production Facility. Initial crystallization screening is based on nanolitre-scale sitting-drop vapour-diffusion experiments (typically 100 nl of protein plus 100 nl of reservoir solution per droplet) which use standard crystallization screening kits and 96-well crystallization plates. For 294 K crystallization trials the barcoded crystallization plates are entered into an automated storage system with a fully integrated imaging system. These plates are imaged in accordance with a pre-programmed schedule and the resulting digital data for each droplet are harvested into a laboratory information-management system (LIMS), scored by crystal recognition software and displayed for user analysis via a web-based interface. Currently, storage for trials at 277 K is not automated and for imaging the crystallization plates are fed by hand into an imaging system from which the data enter the LIMS. The workflow includes two procedures for nanolitre-scale optimization of crystallization conditions: (i) a protocol for variation of pH, reservoir dilution and protein:reservoir ratio and (ii) an additive screen. Experience based on 592 crystallization projects is reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159505PMC
http://dx.doi.org/10.1107/S0907444905007808DOI Listing

Publication Analysis

Top Keywords

crystallization plates
12
crystallization
11
automated storage
8
optimization crystallization
8
crystallization trials
8
crystallization screening
8
imaging system
8
procedure setting
4
setting high-throughput
4
high-throughput nanolitre
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!