Objective: Postmortem and structural imaging studies suggest that patients with schizophrenia have disrupted cerebellar activity. It has been speculated that these abnormalities mediate disorganized thought processes and psychosis. The authors' goal was to use transcranial magnetic stimulation to measure cerebellar inhibition, a proxy of cerebellar activity, as the principal output of the cerebellum is inhibitory.
Method: Cerebellar inhibition was accomplished by delivering a magnetic cerebellar conditioning stimulus 5-15 msec before a magnetic test stimulus to the motor cortex. The cerebellar conditioning stimulus inhibits the size of the motor evoked potential produced by the test stimulus by approximately 50%. Ten patients with schizophrenia and 10 healthy comparison subjects completed the cerebellar inhibition protocol.
Results: Patients with schizophrenia demonstrated significant deficits in cerebellar inhibition compared with healthy subjects.
Conclusions: The authors conclude that deficits in cerebellar inhibitory activity in schizophrenia may be the result of an abnormality in the cerebellum or disrupted cerebellar-thalamic-cortical connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/appi.ajp.162.6.1203 | DOI Listing |
Dev Cogn Neurosci
December 2024
Physical Education and Sports Science Department, National Institute of Education, Nanyang Technological University, Singapore. Electronic address:
Various psychosocial factors like collaboration inherent to team sports might provide a more dynamic environment for cognitive challenges that could foster enhanced neurocognitive development compared to individual sports. We investigated the impact of different organised sports on neurocognitive development in children (N = 11,878; aged 9-11) from the Adolescent Brain Cognitive Development (ABCD) study. Participants were classified into four categories based on their sports involvement at baseline and two years later: none, individual-based, team-based, or both.
View Article and Find Full Text PDFNeurol Int
December 2024
Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil.
Background/objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE).
View Article and Find Full Text PDFJ Bone Miner Res
December 2024
Paris Cité University, Reference center for skeletal dysplasia, INSERM UMR 1163, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), Paris, France.
Chondrodysplasias with multiple dislocations are rare skeletal disorders characterized by hyperlaxity, joint dislocations, and growth retardation. Chondrodysplasias with multiple dislocations have been linked to pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis. In this study, by exome sequencing analysis, we identified a homozygous nonsense variant (NM_001297654.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Biological Sciences, National University of Singapore, Singapore 117543.
BCL2/adenovirus E1B 19-kDa protein-interacting protein 2 homolog (BNIP-H or Caytaxin), a pivotal adaptor protein that facilitates cerebellar cortex growth and synaptic transmission, is posttranslationally modified to regulate neuronal function. This study reports the ubiquitination of BNIP-H by Carboxyl terminus of Hsc70-Interacting Protein (CHIP), a U-box containing E3 ligase that is also regulated autoubiquitination. Specifically, it was observed that CHIP autoubiquitinated itself primarily at Lys23 and Lys31 .
View Article and Find Full Text PDFElife
December 2024
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!