Lead exposure continues to be a significant public health problem. In addition to acute toxicity, Pb has an extremely long half-life in bone. Individuals with past exposure develop increased blood Pb levels during periods of high bone turnover or resorption. Pb is known to affect osteoblasts, osteoclasts, and chondrocytes and has been associated with osteoporosis. However, its effects on skeletal repair have not been studied. We exposed C57/B6 mice to various concentrations of Pb acetate in their drinking water to achieve environmentally relevant blood Pb levels, measured by atomic absorption. After exposure for 6 weeks, each mouse underwent closed tibia fracture. Radiographs were followed and histologic analysis was performed at 7, 14, and 21 days. In mice exposed to low Pb concentrations, fracture healing was characterized by a delay in bridging cartilage formation, decreased collagen type II and type X expression at 7 days, a 5-fold increase in cartilage formation at day 14 associated with delayed maturation and calcification, and a persistence of cartilage at day 21. Fibrous nonunions at 21 days were prevalent in mice receiving very high Pb exposures. Pb significantly inhibited ex vivo bone nodule formation but had no effect on osteoclasts isolated from Pb-exposed animals. No significant effects on osteoclast number or activity were observed. We conclude that Pb delays fracture healing at environmentally relevant doses and induces fibrous nonunions at higher doses by inhibiting the progression of endochondral ossification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257601 | PMC |
http://dx.doi.org/10.1289/ehp.7596 | DOI Listing |
Hand Surg Rehabil
January 2025
SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium; Division of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Corner of Ryneveld and Victoria Street, 7600 Stellenbosch, South Africa.
Am J Transl Res
December 2024
Department of Orthopaedics, Liyang Hospital of Chinese Medicine Changzhou 213300, Jiangsu, China.
Objective: To investigate the alterations in the Geriatric Nutritional Risk Index (GNRI) and bone morphogenetic protein 2 (BMP-2) levels and identify associated factors in older adults with delayed union of osteoporotic thoracolumbar spine fractures.
Methods: From June 2021 to June 2023, 139 elderly patients with osteoporotic thoracolumbar spine fractures were selected and divided into a delayed group and a normal group according to the fracture healing status at 6 months postoperatively. GNRI and BMP-2 levels were assessed in both cohorts.
Objective: To compare the effectiveness of clavicular hook plates and Endobutton plates in treating unstable distal clavicle fractures (UDCFs).
Methods: Data from 95 patients with UDCFs (Neer II and V types) were retrospectively analyzed. Among them, 55 cases were treated with clavicular hook plates (control group), and 40 cases with Endobutton plates (research group).
J Orthop Surg Res
January 2025
Department of Hand and Foot Microsurgery, Jiangxi Careyou Shuguang Orthopedic Hospital, Jiayou Healthy City, No. 858 Fusheng Road, Xihu District, Nanchang, Jiangxi, 330002, China.
Background: Nonunion following a long bone fracture has gained a lot of attention due to the dreadful impact on the life quality of tremendous patients. Recent data have demonstrated the important involvement of angiogenesis in improving fracture healing. Tetramethylpyrazine (TMP) is an active component of Chinese herbal medicine with various biological activities including pro-angiogenesis property.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!